首页> 外文期刊>PLoS One >A Novel Approach for Studying the Physiology and Pathophysiology of Myelinated and Non-Myelinated Axons in the CNS White Matter
【24h】

A Novel Approach for Studying the Physiology and Pathophysiology of Myelinated and Non-Myelinated Axons in the CNS White Matter

机译:研究中枢神经系统白质中有髓和无髓轴突生理和病理生理的新方法

获取原文
           

摘要

Advances in brain connectomics set the need for detailed knowledge of functional properties of myelinated and non-myelinated (if present) axons in specific white matter pathways. The corpus callosum (CC), a major white matter structure interconnecting brain hemispheres, is extensively used for studying CNS axonal function. Unlike another widely used CNS white matter preparation, the optic nerve where all axons are myelinated, the CC contains also a large population of non-myelinated axons, making it particularly useful for studying both types of axons. Electrophysiological studies of optic nerve use suction electrodes on nerve ends to stimulate and record compound action potentials (CAPs) that adequately represent its axonal population, whereas CC studies use microelectrodes (MEs), recording from a limited area within the CC. Here we introduce a novel robust isolated "whole" CC preparation comparable to optic nerve. Unlike ME recordings where the CC CAP peaks representing myelinated and non-myelinated axons vary broadly in size, "whole" CC CAPs show stable reproducible ratios of these two main peaks, and also reveal a third peak, suggesting a distinct group of smaller caliber non-myelinated axons. We provide detailed characterization of "whole" CC CAPs and conduction velocities of myelinated and non-myelinated axons along the rostro-caudal axis of CC body and show advantages of this preparation for comparing axonal function in wild type and dysmyelinated shiverer mice, studying the effects of temperature dependence, bath-applied drugs and ischemia modeled by oxygen-glucose deprivation. Due to the isolation from gray matter, our approach allows for studying CC axonal function without possible "contamination" by reverberating signals from gray matter. Our analysis of "whole" CC CAPs revealed higher complexity of myelinated and non-myelinated axonal populations, not noticed earlier. This preparation may have a broad range of applications as a robust model for studying myelinated and non-myelinated axons of the CNS in various experimental models.
机译:脑部连接组学的进步提出了对特定白质途径中有髓和无髓轴突(如果存在)轴突功能特性的详细了解的需求。 call体(CC)是将大脑半球相互连接的主要白质结构,被广泛用于研究CNS轴突功能。与另一种广泛使用的中枢神经系统白质制剂(所有轴突均具有髓鞘的视神经)不同,CC还包含大量的非髓鞘轴突,因此对于研究两种类型的轴突特别有用。视神经的电生理研究使用神经末梢的抽吸电极刺激并记录足以代表其轴突种群的复合动作电位(CAP),而CC研究则使用微电极(MEs),从CC内的有限区域进行记录。在这里,我们介绍了一种新型的健壮的隔离“整个” CC制剂,与视神经相当。与ME录音不同,ME录音的CC CAP峰代表有髓和无髓轴突,其大小各不相同,“整个” CC CAP表现出这两个主峰的重现率稳定,并且还显示了第三个峰,表明有一组较小的口径非-髓鞘轴突。我们提供了“整个” CC CAP的详细特征,以及沿CC体的尾状尾轴的有髓和无髓轴突的传导速度,并显示了该制剂在比较野生型和有髓鞘的颤抖小鼠轴突功能方面的优势,研究了其作用氧葡萄糖剥夺模型化的温度依赖性,浴用药物和局部缺血由于与灰质隔离,我们的方法允许通过回响灰质信号来研究CC轴突功能而不会产生“污染”。我们对“整个” CC CAPs的分析显示,髓鞘和非髓鞘轴突人群的复杂性更高,这是之前没有注意到的。该制剂作为用于研究各种实验模型中的中枢神经系统的有髓和无髓轴突的鲁棒模型可能具有广泛的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号