...
首页> 外文期刊>PLoS Computational Biology >Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering
【24h】

Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

机译:使用最佳反馈控制建模和自适应点过程滤波的鲁棒脑机接口设计

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Author Summary Brain-machine interfaces (BMI) decode subjects' intended movements from neural activity. Despite significant advances, performance, robustness, and extendibility remain key challenges. Current BMIs use decoders such as Kalman filters whose parameters are estimated in closed-loop BMI operation. However, current decoders do not model the spikes directly and hence may limit the time-scale of neural processing, control, and parameter estimation. Here we develop a novel BMI training architecture for spike-event-based control and parameter estimation, and show that it enables robust control and extends to various tasks. Moreover, we propose a control-theoretic framework for closed-loop decoder training. The BMI incorporates an optimal feedback-control (OFC) model of brain's control behavior to infer its motor intention. The BMI uses a point process to model the spikes; this enables the subject to control the movement and the decoder to estimate the parameters using spike events. Using closed-loop experiments in a non-human primate, we show that the OFC model improves performance compared with current intention estimation techniques; that spike-event-based adaptation enables faster performance convergence compared with current batch-based methods, and is robust to parameter initialization; and that the architecture extends to various tasks. This architecture has significant implications for future clinically-viable BMIs.
机译:作者摘要脑机接口(BMI)从神经活动中解码受试者的预期运动。尽管取得了重大进步,但是性能,鲁棒性和可扩展性仍然是关键挑战。当前的BMI使用诸如卡尔曼滤波器的解码器,其参数是在闭环BMI操作中估计的。但是,当前的解码器无法直接对尖峰进行建模,因此可能会限制神经处理,控制和参数估计的时间范围。在这里,我们开发了一种新颖的BMI训练架构,用于基于突发事件的控制和参数估计,并表明它能够实现鲁棒的控制并扩展到各种任务。此外,我们提出了一种用于闭环解码器训练的控制理论框架。 BMI结合了大脑控制行为的最佳反馈控制(OFC)模型,以推断其运动意图。 BMI使用点过程对峰值进行建模。这使得对象能够控制运动,并且解码器可以使用尖峰事件来估计参数。在非人类灵长类动物中使用闭环实验,我们证明了OFC模型与目前的意图估计技术相比可提高性能;与当前基于批处理的方法相比,基于尖峰事件的自适应可以更快地实现性能收敛,并且对参数初始化具有强大的功能;并且该体系结构扩展到各种任务。这种架构对未来的临床可行的BMI具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号