首页> 外文期刊>PLoS Computational Biology >“Gate-keeper” Residues and Active-Site Rearrangements in DNA Polymerase μ Help Discriminate Non-cognate Nucleotides
【24h】

“Gate-keeper” Residues and Active-Site Rearrangements in DNA Polymerase μ Help Discriminate Non-cognate Nucleotides

机译:DNA聚合酶μ中的“门卫”残基和活性位点重排有助于区分非同源核苷酸

获取原文
获取外文期刊封面目录资料

摘要

Incorporating the cognate instead of non-cognate substrates is crucial for DNA polymerase function. Here we analyze molecular dynamics simulations of DNA polymerase μ (pol μ) bound to different non-cognate incoming nucleotides including A:dCTP, A:dGTP, A(syn):dGTP, A:dATP, A(syn):dATP, T:dCTP, and T:dGTP to study the structure-function relationships involved with aberrant base pairs in the conformational pathway; while a pol μ complex with the A:dTTP base pair is available, no solved non-cognate structures are available. We observe distinct differences of the non-cognate systems compared to the cognate system. Specifically, the motions of active-site residue His329 and Asp330 distort the active site, and Trp436, Gln440, Glu443 and Arg444 tend to tighten the nucleotide-binding pocket when non-cognate nucleotides are bound; the latter effect may further lead to an altered electrostatic potential within the active site. That most of these “gate-keeper” residues are located farther apart from the upstream primer in pol μ, compared to other X family members, also suggests an interesting relation to pol μ's ability to incorporate nucleotides when the upstream primer is not paired. By examining the correlated motions within pol μ complexes, we also observe different patterns of correlations between non-cognate systems and the cognate system, especially decreased interactions between the incoming nucleotides and the nucleotide-binding pocket. Altered correlated motions in non-cognate systems agree with our recently proposed hybrid conformational selection/induced-fit models. Taken together, our studies propose the following order for difficulty of non-cognate system insertions by pol μ: T:dGTP
机译:掺入同源而不是非同源底物对于DNA聚合酶功能至关重要。在这里,我们分析了与不同的非同源进入核苷酸(包括A:dCTP,A:dGTP,A(syn):dGTP,A:dATP,A(syn):dATP,T)结合的DNA聚合酶μ(polμ)的分子动力学模拟:dCTP和T:dGTP研究构象途径中异常碱基对所涉及的结构-功能关系;虽然可以使用带有A:dTTP碱基对的polμ配合物,但没有可用的非关联结构。与同类系统相比,我们观察到非同类系统的明显差异。具体而言,活性位点残基His329和Asp330的运动使活性位点失真,当非同源核苷酸结合时,Trp436,Gln440,Glu443和Arg444倾向于拉紧核苷酸结合袋。后一种效应可能进一步导致活性部位内的静电势发生变化。与其他X家族成员相比,大多数这些“守门人”残基与polμ中的上游引物距离更远,这也表明与polμ在上游引物未配对时掺入核苷酸的能力有关。通过检查polμ配合物中的相关运动,我们还观察到了非同源系统和同源系统之间相关性的不同模式,尤其是传入核苷酸与核苷酸结合口袋之间相互作用的减少。非同源系统中相关运动的变化与我们最近提出的混合构象选择/诱导拟合模型一致。综上所述,我们的研究针对polμ的非同源系统插入难度提出了以下顺序:T:dGTP

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号