首页> 外文期刊>PLoS Computational Biology >Filament Compliance Influences Cooperative Activation of Thin Filaments and the Dynamics of Force Production in Skeletal Muscle
【24h】

Filament Compliance Influences Cooperative Activation of Thin Filaments and the Dynamics of Force Production in Skeletal Muscle

机译:细丝顺应性影响细丝的协同激活和骨骼肌力量产生的动力学。

获取原文
           

摘要

Striated muscle contraction is a highly cooperative process initiated by Ca2+ binding to the troponin complex, which leads to tropomyosin movement and myosin cross-bridge (XB) formation along thin filaments. Experimental and computational studies suggest skeletal muscle fiber activation is greatly augmented by cooperative interactions between neighboring thin filament regulatory units (RU-RU cooperativity; 1 RU?=?7 actin monomers+1 troponin complex+1 tropomyosin molecule). XB binding can also amplify thin filament activation through interactions with RUs (XB-RU cooperativity). Because these interactions occur with a temporal order, they can be considered kinetic forms of cooperativity. Our previous spatially-explicit models illustrated that mechanical forms of cooperativity also exist, arising from XB-induced XB binding (XB-XB cooperativity). These mechanical and kinetic forms of cooperativity are likely coordinated during muscle contraction, but the relative contribution from each of these mechanisms is difficult to separate experimentally. To investigate these contributions we built a multi-filament model of the half sarcomere, allowing RU activation kinetics to vary with the state of neighboring RUs or XBs. Simulations suggest Ca2+ binding to troponin activates a thin filament distance spanning 9 to 11 actins and coupled RU-RU interactions dominate the cooperative force response in skeletal muscle, consistent with measurements from rabbit psoas fibers. XB binding was critical for stabilizing thin filament activation, particularly at submaximal Ca2+ levels, even though XB-RU cooperativity amplified force less than RU-RU cooperativity. Similar to previous studies, XB-XB cooperativity scaled inversely with lattice stiffness, leading to slower rates of force development as stiffness decreased. Including RU-RU and XB-RU cooperativity in this model resulted in the novel prediction that the force-[Ca2+] relationship can vary due to filament and XB compliance. Simulations also suggest kinetic forms of cooperativity occur rapidly and dominate early to get activation, while mechanical forms of cooperativity act more slowly, augmenting XB binding as force continues to develop.
机译:横纹肌收缩是由Ca2 +与肌钙蛋白复合物结合而引发的高度协作过程,导致沿细丝的原肌球蛋白运动和肌球蛋白跨桥(XB)形成。实验和计算研究表明,相邻细丝调节单元之间的协同相互作用(RU-RU协同作用; 1 RU?=?7肌动蛋白单体+1肌钙蛋白复合物+1原肌球蛋白分子)大大增强了骨骼肌纤维的活化。 XB结合还可以通过与RU相互作用(XB-RU协同作用)来放大细丝激活。由于这些交互作用是按时间顺序发生的,因此可以将它们视为协作性的动力学形式。我们以前的空间显式模型表明,也存在机械形式的合作性,这是由XB诱导的XB绑定(XB-XB合作性)引起的。这些机械和动力学形式的协同作用可能在肌肉收缩过程中得到协调,但是很难从实验上分离出每种机制的相对贡献。为了研究这些贡献,我们建立了半肌节的多丝模型,允许RU活化动力学随相邻RU或XB的状态而变化。模拟表明,钙离子与肌钙蛋白的结合激活了细丝距离跨9到11个肌动蛋白,并且耦合的RU-RU相互作用主导了骨骼肌中的协同力响应,这与兔腰肌纤维的测量结果一致。 XB结合对于稳定细丝活化至关重要,特别是在Ca2 +含量低于最大水平时,即使XB-RU协同作用放大的力小于RU-RU协同作用也是如此。与以前的研究相似,XB-XB的协同作用与晶格刚度成反比,导致刚度降低时力发展的速度变慢。在此模型中包括RU-RU和XB-RU的协同作用导致了新的预测,即力[[Ca2 +]]关系可能由于细丝和XB顺应性而变化。模拟还表明,协同作用的动力学形式迅速发生,并较早地支配以得到激活,而机械形式的协同作用则作用较慢,随着力的不断发展,XB结合力增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号