...
首页> 外文期刊>PLoS Computational Biology >Self-organization of conducting pathways explains electrical wave propagation in cardiac tissues with high fraction of non-conducting cells
【24h】

Self-organization of conducting pathways explains electrical wave propagation in cardiac tissues with high fraction of non-conducting cells

机译:传导通路的自组织解释了电波在心脏组织中具有大量非传导细胞的传播

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Author summary Cardiac arrhythmias are one of the major causes of death in the industrialized world. The most dangerous ones are often caused by the blocks of propagation of electrical signals. One of the common factors that contribute to the likelihood of these blocks, is a condition called cardiac fibrosis. In fibrosis, excitable cardiac tissue is partially replaced with the inexcitable and non-conducting connective tissue. The precise mechanisms leading to arrhythmia formation in fibrotic cardiac tissue remain poorly understood. Therefore, it is important to study wave propagation in fibrosis from cellular to tissue level. In this paper, we study tissues with high densities of non-conducting cells in experiments and computer simulations. We have observed a paradoxical ability of the tissue with extremely high portion of non-conducting cells (up to 75%) to conduct electrical signals and contract synchronously, whereas geometric analysis of randomly distributed cells predicted connectivity loss at 40% at the most. To explain this phenomenon, we have studied the patterns that cardiac cells form in the tissue and reproduced their self-organisation in a computer model. Our virtual model also took into account the polygonal shapes of the spreading cells and explained high arrhythmogenicity of fibrotic tissue.
机译:作者摘要心脏心律失常是工业化世界中的主要死亡原因之一。最危险的危险通常是由电信号的传播障碍引起的。导致这些阻塞可能性的常见因素之一是称为心脏纤维化的疾病。在纤维化中,可兴奋的心脏组织被不可兴奋且不导电的结缔组织部分替代。导致纤维化心脏组织中心律失常形成的确切机制仍知之甚少。因此,研究从纤维到组织水平的纤维化中的波传播非常重要。在本文中,我们通过实验和计算机模拟研究具有高密度的非导电细胞的组织。我们已经观察到极高比例的非导电细胞(高达75%)的组织具有传导电信号和同步收缩的悖论能力,而对随机分布的细胞进行几何分析预测,连接性损失最多为40%。为了解释这种现象,我们研究了心脏细胞在组织中形成的模式,并在计算机模型中再现了它们的自我组织。我们的虚拟模型还考虑了扩散细胞的多边形形状,并解释了纤维化组织的高心律失常性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号