首页> 美国卫生研究院文献>PLoS Computational Biology >Self-organization of conducting pathways explains electrical wave propagation in cardiac tissues with high fraction of non-conducting cells
【2h】

Self-organization of conducting pathways explains electrical wave propagation in cardiac tissues with high fraction of non-conducting cells

机译:传导通路的自组织解释了电波在心脏组织中具有大量非传导细胞的传播

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cardiac fibrosis occurs in many forms of heart disease and is considered to be one of the main arrhythmogenic factors. Regions with a high density of fibroblasts are likely to cause blocks of wave propagation that give rise to dangerous cardiac arrhythmias. Therefore, studies of the wave propagation through these regions are very important, yet the precise mechanisms leading to arrhythmia formation in fibrotic cardiac tissue remain poorly understood. Particularly, it is not clear how wave propagation is organized at the cellular level, as experiments show that the regions with a high percentage of fibroblasts (65-75%) are still conducting electrical signals, whereas geometric analysis of randomly distributed conducting and non-conducting cells predicts connectivity loss at 40% at the most (percolation threshold). To address this question, we used a joint in vitro-in silico approach, which combined experiments in neonatal rat cardiac monolayers with morphological and electrophysiological computer simulations. We have shown that the main reason for sustainable wave propagation in highly fibrotic samples is the formation of a branching network of cardiomyocytes. We have successfully reproduced the morphology of conductive pathways in computer modelling, assuming that cardiomyocytes align their cytoskeletons to fuse into cardiac syncytium. The electrophysiological properties of the monolayers, such as conduction velocity, conduction blocks and wave fractionation, were reproduced as well. In a virtual cardiac tissue, we have also examined the wave propagation at the subcellular level, detected wavebreaks formation and its relation to the structure of fibrosis and, thus, analysed the processes leading to the onset of arrhythmias.
机译:心脏纤维化发生在多种形式的心脏病中,被认为是主要的心律失常因素之一。成纤维细胞密度高的区域很可能引起波传播阻滞,从而引起危险的心律不齐。因此,研究通过这些区域的波传播非常重要,但是导致纤维化心脏组织中形成心律不齐的确切机制仍然知之甚少。特别是,尚不清楚如何在细胞水平上组织波的传播,因为实验表明,成纤维细胞百分比较高(65%至75%)的区域仍在传导电信号,而对随机分布的传导和非传导性进行几何分析传导性细胞预测连通性损失最多为40%(渗透阈值)。为了解决这个问题,我们采用了一种联合体外-计算机模拟的方法,该方法将新生大鼠心脏单层的实验与形态和电生理计算机模拟相结合。我们已经表明,在高度纤维化的样本中,可持续的波传播的主要原因是心肌细胞分支网络的形成。我们已经成功地复制了计算机建模中传导通路的形态,假设心肌细胞排列其细胞骨架以融合成心脏合胞体。还重现了单层的电生理特性,例如传导速度,传导阻滞和波分级。在虚拟的心脏组织中,我们还检查了在亚细胞水平上的波传播,检测了波的形成及其与纤维化结构的关系,从而分析了导致心律不齐的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号