...
首页> 外文期刊>PLoS Computational Biology >Computational Design of the Affinity and Specificity of a Therapeutic T Cell Receptor
【24h】

Computational Design of the Affinity and Specificity of a Therapeutic T Cell Receptor

机译:治疗性T细胞受体的亲和力和特异性的计算设计

获取原文

摘要

T cell receptors (TCRs) are key to antigen-specific immunity and are increasingly being explored as therapeutics, most visibly in cancer immunotherapy. As TCRs typically possess only low-to-moderate affinity for their peptide/MHC (pMHC) ligands, there is a recognized need to develop affinity-enhanced TCR variants. Previous in vitro engineering efforts have yielded remarkable improvements in TCR affinity, yet concerns exist about the maintenance of peptide specificity and the biological impacts of ultra-high affinity. As opposed to in vitro engineering, computational design can directly address these issues, in theory permitting the rational control of peptide specificity together with relatively controlled increments in affinity. Here we explored the efficacy of computational design with the clinically relevant TCR DMF5, which recognizes nonameric and decameric epitopes from the melanoma-associated Melan-A/MART-1 protein presented by the class I MHC HLA-A2. We tested multiple mutations selected by flexible and rigid modeling protocols, assessed impacts on affinity and specificity, and utilized the data to examine and improve algorithmic performance. We identified multiple mutations that improved binding affinity, and characterized the structure, affinity, and binding kinetics of a previously reported double mutant that exhibits an impressive 400-fold affinity improvement for the decameric pMHC ligand without detectable binding to non-cognate ligands. The structure of this high affinity mutant indicated very little conformational consequences and emphasized the high fidelity of our modeling procedure. Overall, our work showcases the capability of computational design to generate TCRs with improved pMHC affinities while explicitly accounting for peptide specificity, as well as its potential for generating TCRs with customized antigen targeting capabilities.
机译:T细胞受体(TCR)是抗原特异性免疫的关键,并且在癌症免疫治疗中最明显地被作为治疗剂进行研究。由于TCR通常仅对其肽/ MHC(pMHC)配体具有低至中度的亲和力,因此人们需要开发亲和力增强的TCR变体。先前的体外工程研究成果已大大改善了TCR亲和力,但仍存在有关肽特异性维持和超高亲和力的生物学影响的担忧。与体外工程相反,计算设计可以直接解决这些问题,理论上可以合理地控制肽的特异性以及相对受控的亲和力增加。在这里,我们探索了与临床相关的TCR DMF5进行计算设计的功效,该TCR DMF5从I类MHC HLA-A2呈现的黑素瘤相关Melan-A / MART-1蛋白中识别了非异构和十进制表位。我们测试了通过灵活和严格的建模协议选择的多个突变,评估了对亲和力和特异性的影响,并利用数据来检查和改善算法性能。我们鉴定了多个突变,这些突变改善了结合亲和力,并表征了先前报道的双突变体的结构,亲和力和结合动力学,该双突变体对十聚pMHC配体表现出令人印象深刻的400倍亲和力提高,但未检测到与非同源配体的结合。这种高亲和力突变体的结构表明几乎没有构象结果,并强调了我们建模过程的高保真度。总体而言,我们的工作展示了计算设计的能力,可以生成具有改善的pMHC亲和力的TCR,同时明确考虑肽的特异性,以及其生成具有定制抗原靶向功能的TCR的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号