首页> 外文期刊>PLoS Computational Biology >Numerical Analysis of Ca 2+ Signaling in Rat Ventricular Myocytes with Realistic Transverse-Axial Tubular Geometry and Inhibited Sarcoplasmic Reticulum
【24h】

Numerical Analysis of Ca 2+ Signaling in Rat Ventricular Myocytes with Realistic Transverse-Axial Tubular Geometry and Inhibited Sarcoplasmic Reticulum

机译:真实的横轴管状几何和肌浆网抑制大鼠心室肌细胞Ca 2+信号的数值分析

获取原文
获取外文期刊封面目录资料

摘要

The t-tubules of mammalian ventricular myocytes are invaginations of the cell membrane that occur at each Z-line. These invaginations branch within the cell to form a complex network that allows rapid propagation of the electrical signal, and hence synchronous rise of intracellular calcium (Ca2+). To investigate how the t-tubule microanatomy and the distribution of membrane Ca2+ flux affect cardiac excitation-contraction coupling we developed a 3-D continuum model of Ca2+ signaling, buffering and diffusion in rat ventricular myocytes. The transverse-axial t-tubule geometry was derived from light microscopy structural data. To solve the nonlinear reaction-diffusion system we extended SMOL software tool (http://mccammon.ucsd.edu/smol/). The analysis suggests that the quantitative understanding of the Ca2+ signaling requires more accurate knowledge of the t-tubule ultra-structure and Ca2+ flux distribution along the sarcolemma. The results reveal the important role for mobile and stationary Ca2+ buffers, including the Ca2+ indicator dye. In agreement with experiment, in the presence of fluorescence dye and inhibited sarcoplasmic reticulum, the lack of detectible differences in the depolarization-evoked Ca2+ transients was found when the Ca2+ flux was heterogeneously distributed along the sarcolemma. In the absence of fluorescence dye, strongly non-uniform Ca2+ signals are predicted. Even at modest elevation of Ca2+, reached during Ca2+ influx, large and steep Ca2+ gradients are found in the narrow sub-sarcolemmal space. The model predicts that the branched t-tubule structure and changes in the normal Ca2+ flux density along the cell membrane support initiation and propagation of Ca2+ waves in rat myocytes.
机译:哺乳动物心室肌细胞的t管是在每个Z线处发生的细胞膜内陷。这些侵入在细胞内分支形成一个复杂的网络,该网络允许电信号的快速传播,从而使细胞内钙(Ca2 +)同步上升。为了研究t小管的微解剖结构和Ca2 +膜通量的分布如何影响心脏兴奋-收缩耦合,我们开发了Ca2 +信号,缓冲和在大鼠心室肌细胞中扩散的3-D连续模型。横轴t形管的几何形状是从光学显微镜的结构数据得出的。为了解决非线性反应扩散系统,我们扩展了SMOL软件工具(http://mccammon.ucsd.edu/smol/)。分析表明,对Ca2 +信号的定量理解需要更准确地了解t-小管的超微结构和沿肌膜的Ca2 +通量分布。结果揭示了对于移动和固定Ca2 +缓冲液(包括Ca2 +指示剂染料)的重要作用。与实验一致,在荧光染料和肌浆网被抑制的情况下,当Ca2 +通量沿肌膜异质分布时,发现去极化诱发的Ca2 +瞬变缺乏可检测的差异。在没有荧光染料的情况下,可以预测到强烈不均匀的Ca2 +信号。即使在Ca2 +流入期间达到适度的Ca2 +升高,在狭窄的次肌膜壁间隙中也会发现较大且陡峭的Ca2 +梯度。该模型预测,沿细胞膜的分支t管结构和正常Ca2 +通量密度的变化支持大鼠心肌细胞中Ca2 +波的起始和传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号