...
首页> 外文期刊>PLoS Computational Biology >Computational geometry for modeling neural populations: From visualization to simulation
【24h】

Computational geometry for modeling neural populations: From visualization to simulation

机译:用于建模神经种群的计算几何:从可视化到仿真

获取原文

摘要

Author summary A group of slow, noisy and unreliable cells collectively implement our mental faculties, and how they do this is still one of the big scientific questions of our time. Mechanistic explanations of our cognitive skills, be it locomotion, object handling, language comprehension or thinking in generalwhatever that may beis still far off. A few years ago the following question was posed: Imagine that aliens would provide us with a brain-sized clump of matter, with complete freedom to sculpt realistic neuronal networks with arbitrary precision. Would we be able to build a brain? The answer appears to be no, because this technology is actually materializing, not in the form of an alien kick-start, but through steady progress in computing power, simulation methods and the emergence of databases on connectivity, neural cell types, complete with gene expression, etc. A number of groups have created brain-scale simulations, others like the Blue Brain project may not have simulated a full brain, but they included almost every single detail known about the neurons they modelled. And yet, we do not know how we reach for a glass of milk. Mechanistic, large-scale models require simulations that bridge multiple scales. Here we present a method that allows the study of two dimensional dynamical systems subject to noise, with very little restrictions on the dynamical system or the nature of the noise process. Given that high dimensional realistic models of neurons have been reduced successfully to two dimensional dynamical systems, while retaining all essential dynamical features, we expect that this method will contribute to our understanding of the dynamics of larger brain networks without requiring the level of detail that make brute force large-scale simulations so unwieldy.
机译:作者摘要一群缓慢,嘈杂和不可靠的细胞共同实现了我们的智力,而如何做到这一点仍然是我们这个时代的重大科学问题之一。对我们的认知技能的机械解释,无论是运动,对象处理,语言理解还是一般的思考,无论距离多么遥远。几年前,提出了以下问题:想象一下,外星人将为我们提供大脑大小的物质团块,并具有完全自由地以任意精度雕刻现实的神经元网络的能力。我们能够建立大脑吗?答案似乎是否定的,因为该技术实际上并未实现,不是通过外星人的启动,而是通过计算能力,仿真方法的稳步发展以及关于连接性,神经细胞类型以及基因的数据库的出现许多小组已经创建了大脑规模的模拟,诸如“ Blue Brain”项目之类的其他小组可能还没有模拟整个大脑,但是它们几乎包括了有关所建模神经元的每个细节。但是,我们不知道如何喝一杯牛奶。机械的大型模型需要跨多个比例的模拟。在这里,我们提出一种方法,该方法可以研究受噪声影响的二维动力学系统,而对动力学系统或噪声过程的性质几乎没有限制。鉴于神经元的高维逼真的模型已成功地简化为二维动力学系统,同时保留了所有必要的动力学特征,我们希望这种方法将有助于我们理解较大的大脑网络的动力学,而无需进行任何详细的研究。蛮力的大规模模拟是如此笨拙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号