...
首页> 外文期刊>PLoS Biology >The amplitude in periodic neural state trajectories underlies the tempo of rhythmic tapping
【24h】

The amplitude in periodic neural state trajectories underlies the tempo of rhythmic tapping

机译:周期性神经状态轨迹的振幅是节奏拍子的节奏基础

获取原文

摘要

Our motor commands can be exquisitely timed according to the demands of the environment, and the ability to generate rhythms of different tempos is a hallmark of musical cognition. Yet, the neuronal underpinnings behind rhythmic tapping remain elusive. Here, we found that the activity of hundreds of primate medial premotor cortices (MPCs; pre-supplementary motor area [preSMA] and supplementary motor area [SMA]) neurons show a strong periodic pattern that becomes evident when their responses are projected into a state space using dimensionality reduction analysis. We show that different tapping tempos are encoded by circular trajectories that travelled at a constant speed but with different radii, and that this neuronal code is highly resilient to the number of participating neurons. Crucially, the changes in the amplitude of the oscillatory dynamics in neuronal state space are a signature of duration encoding during rhythmic timing, regardless of whether it is guided by an external metronome or is internally controlled and is not the result of repetitive motor commands. This dynamic state signal predicted the duration of the rhythmically produced intervals on a trial-by-trial basis. Furthermore, the increase in variability of the neural trajectories accounted for the scalar property, a hallmark feature of temporal processing across tasks and species. Finally, we found that the interval-dependent increments in the radius of periodic neural trajectories are the result of a larger number of neurons engaged in the production of longer intervals. Our results support the notion that rhythmic timing during tapping behaviors is encoded in the radial curvature of periodic MPC neural population trajectories. Beat-based timing depends on the amplitude of periodic neural population dynamics and on the number of engaged neurons in primate medial premotor areas. Author summary The ability to extract the regular pulse in music and to respond in synchrony to this pulse is called beat synchronization and is a natural human behavior exhibited during dancing and musical ensemble playing. A part of the brain called the medial premotor cortex has been associated with rhythmic entrainment, and yet the neural basis of this complex behavior is still far from known. In this work, we recorded the neuronal activity from the medial premotor cortices of macaques trained to tap rhythmically to the frequency of a metronome. Using principal component analysis, we projected the time-varying activity of hundreds of neurons into a low-dimensional space. The projected activity of the neural population generated a circular trajectory for every interval produced in the sequence, which travelled at a constant speed but with different radii for different tapping tempos. In addition, the increase in amplitude and variability of the neural trajectories accounted for the scalar property of timing, a generalized feature of temporal processing across tasks and species and which defines a linear relationship between the variability of temporal performance and interval duration.
机译:我们的运动命令可以根据环境要求精确地计时,产生不同节奏节奏的能力是音乐认知的标志。然而,节奏敲击背后的神经元基础仍然难以捉摸。在这里,我们发现数百个灵长类动物内侧运动前皮层(MPCs;补充运动区[preSMA]和补充运动区[SMA])神经元的活动表现出很强的周期性模式,当它们的反应投射到一个状态时,这种模式就会变得明显空间使用降维分析。我们显示出不同的拍子速度由以恒定速度行进但半径不同的圆形轨迹编码,并且该神经元代码对参与神经元的数量具有高度的弹性。至关重要的是,神经元状态空间中振荡动力学幅度的变化是节奏定时中持续时间编码的标志,无论它是由外部节拍器引导还是由内部控制,而不是重复的运动命令的结果。该动态状态信号在逐个试验的基础上预测了有节奏的间隔的持续时间。此外,神经轨迹的可变性增加说明了标量特性,标量特性是跨任务和物种进行时间处理的标志性特征。最后,我们发现周期性神经轨迹的半径中与间隔有关的增量是大量神经元参与较长间隔产生的结果。我们的研究结果支持这样一种观念,即拍击行为中的节奏定时编码在周期性MPC神经种群轨迹的径向曲率中。基于节拍的计时取决于周期性神经种群动态的幅度以及灵长类动物内侧运动前区域中参与神经元的数量。作者摘要提取音乐中常规脉冲并对此脉冲进行同步的能力称为拍子同步,这是在舞蹈和音乐合奏中表现出的自然的人类行为。大脑的一部分称为运动前内侧皮质,与节律性夹带有关,但这种复杂行为的神经基础仍然是未知的。在这项工作中,我们记录了训练有节奏地敲打节拍器频率的猕猴内侧运动前皮层的神经元活动。使用主成分分析,我们将数百个神经元的时变活动投影到一个低维空间中。神经种群的预计活动为序列中产生的每个间隔生成了一条圆形轨迹,该轨迹以恒定的速度传播,但对于不同的拍打速度具有不同的半径。另外,神经轨迹的幅度和可变性的增加说明了时间的标量特性,这是跨任务和物种的时间处理的普遍特征,并且它定义了时间性能的可变性和间隔持续时间之间的线性关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号