首页> 外文期刊>Physical Review X >Quantum Entanglement in Neural Network States
【24h】

Quantum Entanglement in Neural Network States

机译:神经网络状态下的量子纠缠

获取原文
           

摘要

Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural networks in representing quantum many-body states regardless of how much entanglement they possess, which paves a novel way to bridge computer-science-based machine-learning techniques to outstanding quantum condensed-matter physics problems.
机译:机器学习是当今发展最快的跨学科领域之一,它有望为解决复杂的量子多体问题提供空前的前景。最近,在将机器学习技术应用于量子多体物理学的应用中,非常需要了解代表性的人工神经网络状态的物理方面。在本文中,我们将通过研究量子纠缠特性来探索对网络状态下的物理特征进行编码的数据结构,重点是受限玻尔兹曼机(RBM)体系结构。我们证明了所有短程RBM状态的纠缠熵都满足任意尺寸和二分几何的面积定律。对于远程RBM状态,我们通过使用精确的结构表明,这些状态可能表现出体积律纠缠,这意味着RBM在表示具有大量纠缠的量子态方面具有显着的能力。令人惊讶的是,在非零参数的数量仅随系统大小线性缩放的意义上,这些状态的神经网络表示非常有效。我们通过随机采样RBM的权重参数进一步检查通用RBM状态的纠缠特性。我们发现它们的平均纠缠熵服从体积律定标,同时其与完全随机纯态的Page熵有很大的偏离。我们表明,它们的纠缠谱没有与随机矩阵理论相关的通用部分,并且具有泊松型能级统计。使用强化学习,我们证明RBM能够找到具有长程相互作用的模型哈密顿量的基态(具有幂律缠结)。此外,我们通过一维对称保护的拓扑簇状态的具体示例表明,RBM表示也可以用作分析计算纠缠谱的工具。我们的研究结果揭示了人工神经网络在表示量子多体状态时无与伦比的力量,无论它们具有多少纠缠,这为将基于计算机科学的机器学习技术与突出的量子凝聚态物理问题架起了一条新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号