首页> 外文学位 >Quantum cryptography for WDM networks: Encryption with coherent states and key generation with fiber based entanglement.
【24h】

Quantum cryptography for WDM networks: Encryption with coherent states and key generation with fiber based entanglement.

机译:WDM网络的量子密码术:具有相干态的加密和具有基于光纤的纠缠的密钥生成。

获取原文
获取原文并翻译 | 示例

摘要

New telecommunication techniques utilizing distinctive quantum properties, e.g., measurement uncertainties and entanglement, extend the capabilities of existing systems. Quantum cryptography, as an example, provides physical layer security enforced by fundamental physical laws, while modern cryptographic techniques rely on assumptions of intractability of certain mathematical problems with limited computational power.; Rapid growth of the Internet leading to global telecommunications puts heavy demands on information security. A novel keyed direct data encryption technique based on the fundamental and irreducible quantum noise of laser light is shown to be compatible with the existing high-speed optical communications infrastructure. With this technique, line encryption for OC-12 (622 Mbps) SONET data over 250 km in a wavelength-division-multiplexing network is demonstrated with fully streaming data.; Nonlocal correlation is employed in applications including cryptographic key generation whose practical realizations require telecom-band photon counting and entangled photon-pair generation. Existing telecom-band avalanche-photodiode based photon-counting techniques suffer from large detection noise at high operation rates. New techniques such as ultrashort gating and synchronous sampling at the onset of avalanches are introduced for suppressing the detection noise at high operation speeds. Photon counting at record speeds (25 MHz) that employing an avalanche photodiode is developed, demonstrated and deployed in the experimental studies. Telecom-band correlated photons can be directly created inside optical fibers through its chi(3) nonlinearity. This technique brings practical advantages such as the easy compatibility with fiber-optic systems, excellent spatial modal purity, and potential high-speed operation. As a practical development of this technique, a novel Faraday-mirror based ultra-stable scheme for generating polarization entangled photon-pairs is proposed and demonstrated. Fiber-based polarization entangled photon-pairs are experimentally analyzed and characterized with various single-photon detectors. In an effort to satisfy the cryptographic objective of key generation, a keyed protocol of entanglement-based key generation is experimentally studied in wavelength-division-multiplexing lines wherein classical optical signals co-exist with entangled photons. Telecom-band correlated photon-pair generation at 9.95 GHz is also demonstrated for the first time. Such high operation rate demonstrates the feasibility of future high speed quantum communications.
机译:利用独特的量子特性(例如测量不确定性和纠缠)的新电信技术扩展了现有系统的能力。以量子密码为例,它提供了由基本物理定律强制执行的物理层安全性,而现代密码技术则依赖于某些数学问题难以解决且计算能力有限的假设。 Internet的快速发展导致全球电信对信息安全提出了很高的要求。一种基于激光的基本和不可还原的量子噪声的新颖的键控直接数据加密技术被证明与现有的高速光通信基础结构兼容。通过这种技术,在波分多路复用网络中,通过完全流传输的数据演示了对250公里以上OC-12(622 Mbps)SONET数据的线路加密。非本地相关性在包括加密密钥生成在内的应用中使用,其实际实现需要电信频段光子计数和纠缠光子对生成。现有的基于电信频带雪崩光电二极管的光子计数技术在高工作速率下会遭受较大的检测噪声。引入了诸如雪崩开始时的超短选通和同步采样之类的新技术,以抑制高操作速度下的检测噪声。在实验研究中开发,演示并部署了以雪崩光电二极管为记录速度(25 MHz)的光子计数。电信频段相关的光子可以通过其chi(3)非线性直接在光纤内部创建。该技术带来了实用的优势,例如与光纤系统的轻松兼容性,出色的空间模态纯度以及潜在的高速操作。作为该技术的实际发展,提出并证明了一种新颖的基于法拉第镜的超稳定方案,用于产生偏振纠缠的光子对。基于光纤的偏振纠缠光子对通过各种单光子探测器进行了实验分析和表征。为了满足密钥生成的密码学目标,在经典光信号与纠缠光子共存的波分复用线路中,对基于纠缠密钥生成的密钥协议进行了实验研究。还首次展示了9.95 GHz的电信频段相关光子对生成。如此高的运行速度证明了未来高速量子通信的可行性。

著录项

  • 作者

    Liang, Chuang.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

  • 入库时间 2022-08-17 11:39:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号