首页> 外文学位 >Quantum cryptography using coherent states: Randomized encryption and key generation.
【24h】

Quantum cryptography using coherent states: Randomized encryption and key generation.

机译:使用相干态的量子密码:随机加密和密钥生成。

获取原文
获取原文并翻译 | 示例

摘要

With the advent of the global optical-telecommunications infrastructure, an increasing number of individuals, companies, and agencies communicate information with one another over public networks or physically-insecure private networks. While the majority of the traffic flowing through these networks requires little or no assurance of secrecy, the same cannot be said for certain communications between banks, between government agencies, within the military, and between corporations. In these arenas, the need to specify some level of secrecy in communications is a high priority.; While the current approaches to securing sensitive information (namely the public-key-cryptography infrastructure and deterministic private-key ciphers like AES and 3DES) seem to be cryptographically strong based on empirical evidence, there exist no mathematical proofs of secrecy for any widely deployed cryptosystem. As an example, the ubiquitous public-key cryptosystems infer all of their secrecy from the assumption that factoring of the product of two large primes is necessarily time consuming---something which has not, and perhaps cannot, be proven.; Since the 1980s, the possibility of using quantum-mechanical features of light as a physical mechanism for satisfying particular cryptographic objectives has been explored. This research has been fueled by the hopes that cryptosystems based on quantum systems may provide provable levels of secrecy which are at least as valid as quantum mechanics itself. Unfortunately, the most widely considered quantum-cryptographic protocols (BB84 and the Ekert protocol) have serious implementation problems. Specifically, they require quantum-mechanical states which are not readily available, and they rely on unproven relations between intrusion-level detection and the information available to an attacker. As a result, the secrecy level provided by these experimental implementations is entirely unspecified.; In an effort to provably satisfy the cryptographic objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.
机译:随着全球光通信基础设施的出现,越来越多的个人,公司和机构通过公共网络或物理上不安全的专用网络相互通信。尽管流经这些网络的大部分流量几乎不需要或不需要保证保密性,但对于银行之间,政府机构之间,军方内部以及公司之间的某些通信,却不能说相同。在这些领域中,在通信中指定某种程度的保密性是当务之急。虽然目前基于经验证据来保护敏感信息的方法(即,公钥密码基础结构和确定性私钥密码,例如AES和3DES)在密码学上似乎很强大,但对于任何广泛部署的密码系统,都没有数学上的保密证据。 。例如,无处不在的公钥密码系统是基于两个大素数乘积的分解必定很费时的假设来推断其所有秘密的,这一事实尚未得到证实,也许无法得到证实。自1980年代以来,已经探索了使用光的量子力学特征作为满足特定密码学目标的物理机制的可能性。希望基于量子系统的密码系统可以提供可证明的机密性,这种安全性至少与量子力学本身一样有效,从而推动了这项研究。不幸的是,最广泛考虑的量子密码协议(BB84和Ekert协议)存在严重的实现问题。具体而言,它们需要不易获得的量子力学状态,并且它们依赖于入侵级别检测与攻击者可用信息之间未经证实的关系。结果,这些实验实现提供的保密级别是完全不确定的。为了可证明地满足密钥生成和直接数据加密的密码学目标,展示了一种新的量子密码原理,其中采用了键控相干态信号集。这些方案利用相干态的基本和不可约的量子测量噪声,不需要用户测量攻击者的影响。实现并分析了基于这些技术的实验性密钥生成和数据加密方案,这些方案与当今的WDM光纤电信基础架构兼容。

著录项

  • 作者

    Corndorf, Eric.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 264 p.
  • 总页数 264
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号