首页> 外文期刊>PCI journal >A direct design approach for strengthening simple-span beams with external posttensioning
【24h】

A direct design approach for strengthening simple-span beams with external posttensioning

机译:一种直接设计方法,通过外部后拉力来加固简跨梁

获取原文
           

摘要

>External post-tensioning, in which external tendons are installed on the outside of a beam, is an efficient strengthening method for concrete beams. In such cases, a direct approach to determine the tendon configuration for a desired increase in load-carrying capacity would be useful, and this paper develops just such an approach for simple-span beams. The installation of external tendons causes an increase in the beam capacity in two ways. First, the tendons contribute directly to the load-carrying capacity by balancing part of the increased loads. Second, the concrete compression zone is increased, which indirectly leads to an increase in the beam capacity.Two sets of equationsa€”refined equations and simplified equationsa€”are established for the determination of the increase in load-carrying capacity. The refined equations account for the contribution of both the increased concrete compression zone and the direct contribution of the tendons, while the simplified equations account for the direct contribution of the tendons only. A comparison with 124 simple-span beams from previous investigations showed that the increases in load-carrying capacity predicted by the refined equations are in good agreement with the test data, while those predicted by the simplified equations are conservative.>References>1. Aalami, B. O., and D. T. Swanson. 1988. Innovative Rehabilitation of a Parking Structure. Concrete International, V. 10, No. 2 (February): pp. 30-35. >2. Alkhairi, F. M. 1991. On the Flexural Behavior of Concrete Beams Prestressed with Unbonded Internal and External Tendons. PhD thesis, University of Michigan, Ann Arbor. >3. Naaman, A. E., and F. M. Alkhairi. 1991. target="_blank" title="Stress at Ultimate in Unbonded Post-Tensioning Tendons: Part 2 - Proposed Methodology." href="http://dx.doi.org/10.14359/1288 ">Stress at Ultimate in Unbonded Post-Tensioning Tendons: Part 2 - Proposed Methodology. ACI Structural Journal, V. 88, No. 6 (November-December): pp.  683-692. >4. Naaman, A. E., N. Burns, C. French, W. Gamble, and A. H. Mattock. 2002.target="_blank" title=" Stress in Unbonded Prestressing Tendons at Ultimate: Recommendation" href="http://dx.doi.org/10.14359/12121 "> Stress in Unbonded Prestressing Tendons at Ultimate: Recommendation. ACI Structural Journal, V. 99, No. 4 (July- August): pp. 520-531. >5. American Concrete Institute (ACI) Committee 318. 2008. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R- 08). Farmington Hills, MI: ACI. >6. American Association of State and Highway Transportation Officials (AASHTO). 2004. AASHTO LRFD Bridge Design Specifications. 3rd ed. Washington DC: AASHTO. >7. Lin, T. Y. 1963. target="_blank" title="Load-Balancing Method for Design and Analysis of Prestressed Concrete Structures" href="http://dx.doi.org/10.14359/7874 ">Load-Balancing Method for Design and Analysis of Prestressed Concrete Structures. Journal of the American Concrete Institute, V. 60, No. 6 (June): pp. 719-741. >8. Roberts-Wollmann, C. L., M. E. Kreger, D. M. Rogovsky, and J. E. Breen. 2005. target="_blank" title="Stress in External Tendons at Ultimate." href="http://dx.doi.org/10.14359/14271 ">Stress in External Tendons at Ultimate. ACI Structural Journal, V. 102, No. 2 (March-April): pp. 206-213. >9. Roberts-Wollmann, C. L., M. E. Kreger, D. M. Rogovsky, J. E. Breen, J. S. Du, W. L. Lu, and W. Y. Ji. Discussion. 2006. ACI Structural Journal, V. 103,  No. 1 (January-February): pp. 149-154.>10. Tan K. H., and C. K. Ng. 1997.target="_blank" title=" Effects of Deviators and Tendon Configuration on Behavior of Externally Prestressed Beams" href="http://dx.doi.org/10.14359/456 "> Effects of Deviators and Tendon Configuration on Behavior of Externally Prestressed Beams. ACI Structural Journal, V. 94, No. 1 (January-February): pp. 13-22. >11. Tan, K. H., A. E.
机译:>在梁的外部安装外部钢筋的外部后张法是一种有效的混凝土梁加固方法。在这种情况下,为确定所需的承载能力增加而确定腱结构的直接方法将很有用,并且本文仅针对单跨梁开发了这种方法。外部筋的安装以两种方式增加了梁的承载能力。首先,肌腱通过平衡部分增加的载荷而直接有助于承载能力。其次,增加混凝土受压区,间接导致梁承载力的增加。建立了两套方程式:“精化方程式”和“简化方程式”,用于确定承载力的增加。改进的方程式既考虑了增加的混凝土受压区的作用,又考虑了钢筋的直接作用,而简化的方程式仅考虑了钢筋的直接作用。与先前研究的124个单跨梁的比较表明,精简方程式预测的承载能力的增长与试验数据吻合良好,而简化方程式预测的承载能力是保守的。 >参考文献 > 1。 Aalami,B.O。和D.T. Swanson。 1988年。创新修复停车结构。混凝土国际,第10卷,第2期(2月):第30-35页。 > 2。 Alkhairi,F。M. 1991年。《关于无内部和外部腱的预应力混凝土梁的抗弯性能》。密西根大学安娜堡分校的博士学位论文。 > 3。 Naaman,A。E.和F. M. Alkhairi。 1991年。target =“ _ blank” title =“在未张紧的后张紧筋中的最终应力:第二部分-拟议方法。” href =“ http://dx.doi.org/10.14359/1288”>在未张紧的后张紧腱中获得极限应力:第2部分-建议的方法。 ACI结构杂志,第88卷,第6期( 11月-12月):第683-692页。 > 4。 Naaman,A。E.,N。Burns,C。French,W。Gamble和A. H. Mattock。 2002. target="_blank" title=" 极限时无粘结预应力筋的应力:推荐" href="http://dx.doi.org/10.14359/12121 ">极限时无粘结预应力筋的应力:推荐< / a>。 ACI结构杂志,第99卷,第4期(7月至8月):第520-531页。 > 5。美国混凝土学会(ACI)委员会318。2008。《结构混凝土的建筑规范要求》(ACI 318-08)和评注(ACI 318R-08)。密西根州法明顿希尔斯:ACI。 > 6。美国州和公路运输官员协会(AASHTO)。 2004年。《 AASHTO LRFD桥梁设计规范》。第三版。华盛顿特区:AASHTO。 > 7。林,TY,1963年。荷载平衡方法用于预应力混凝土结构的设计和分析。 《美国混凝土研究所学报》,第60卷,第6期(6月):第719-741页。 > 8。 Roberts-Wollmann,C.L.,M.E.Kreger,D.M.Rogovsky和J.E.Breen。 “,2005年。target =” _ blank“ title =”终极外部肌腱的应力。“ href =“ http://dx.doi.org/10.14359/14271”>极限时的外部肌腱压力。 ACI结构期刊,第102卷,第2期(3月至4月):第206- 213。 > 9。 Roberts-Wollmann,C.L.,M.E。Kreger,D.M.Rogovsky,J.E。Breen,J.S.Du,W.L.Lu和W.Y.Ji.讨论。 2006年.ACI结构期刊,第103卷,第1期(1-2月):第149-154页。 > 10。 Tan K.H.和C.K. Ng。 1997. target="_blank"title="偏斜器和腱结构对外部预应力梁行为的影响"href="http://dx.doi.org/10.14359/456">偏斜器和腱结构对影响体外预应力梁的行为。 ACI结构杂志,第94卷,第1期(1月至2月):第13-22页。 > 11。 Tan,K.H.,A.E.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号