...
首页> 外文期刊>PCI journal >Behavior of Prestressed Concrete Box-Beam Bridges Using CFRP Tendons
【24h】

Behavior of Prestressed Concrete Box-Beam Bridges Using CFRP Tendons

机译:CFRP筋作用的预应力混凝土箱梁桥性能

获取原文
   

获取外文期刊封面封底 >>

       

摘要

style="text-align: left;">This paperpresents the results of an experimental and analytical study of the flexural response of concrete box beams prestressed with carbon fiber reinforced polymer (CFRP) tendons Diversified  Composites Inc. (DCI) for three highway bridge models. Each bridge model comprises two precast concrete box beams pretensioned using DCI tendons. In one of the bridge models, the box beams were also prestressed using 12 unbonded, DCI post-tensioning tendons. in the second bridge model, the box beams were not provided with post-tensioning tendons. The third bridge model comprised box beams provided with 12 unbonded tendons without any force. This study consisted of predicting parameters such as transfer lengths of DCI tendons, ultimate loads, deflections, post-tensioning  forces, strains, and energy ratios. This paperaisopresents a comparison of experimental and analytical results. It was observed that the measured transfer lengths of DCI tendons ranged from 25 to  32 times the nominal tendon diameter. The bridge model comprising box beams prestressed using both pretensioning and unbonded post-tensioning tendons resulted in higher load capacity and lower ductility compared with the other two bridge models. The close agreement between experimental and analytical values signifies the accuracy of a strain-controlled approach in analyzing CFRP box beam bridge models. >References style="text-align: left;">1. ACT Committee 440, 1996, State-of-the-Art Report on Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures (ACT 440R-96), American Concrete Institute, Farmington Hills, MI, 65  pp. style="text-align: left;">2. Hindi, A., MacGregor, R., Kreger, M. E., and Breen, J. E., 1995, target="_blank" title="a€?Enhancing Strength and Ductility of Post-tensioned Segmental Box Girder Bridges,a€?" href="http://dx.doi.org/10.14359/1472 ">a€?Enhancing Strength and Ductility of Post-tensioned Segmental Box Girder Bridges,a€? ACI Structural Journal, V. 92, No. 1, January-February, pp. 33-44. style="text-align: left;">3. Taly, N., 1998, Design of Modern Highway Bridges, McGraw Hill Companies Inc., New York, NY, pp. 382-487. style="text-align: left;">4. Kato, T. and Hayashida, N., 1993, Flexural Characteristics of Prestressed Concrete Beams with CFRP Tendons, (ACI SP-138), American Concrete Institute, Farmington Hills, MI, pp. 41-440. 5.  Mutsuyoshi, H. and Machida, A., 1993, Behavior of Prestressed Concrete Beams Using FRP as External Cable (ACI SP-138), American Concrete Institute, Farmington Hills, MI, 1993, pp. 401-418. style="text-align: left;">6. Grace, N. F. and Sayed, G. A., 1997, a€?Behavior of Externally/Internally Prestressed Composite Bridge System,a€? Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete  Structures, V. 2, Sapporo, Japan, pp. 671-678. style="text-align: left;">7. Grace, N. F., Enomoto, T., Abdel-Sayed, G., Yagi, K., and Collavino, L., 2003, target="_blank" title="a€?Experimental Study and Analysis of a Full-Scale CFRP/CFCC Double-Tee Bridge Beam,a€? " href="http://dx.doi.org/10.15554/pcij.07012003.120.139 ">a€?Experimental Study and Analysis of a Full-Scale CFRP/CFCC Double-Tee Bridge Beam,a€? PCI Journal, V. 48, No. 4,  July-August, pp. 120-139. style="text-align: left;">8. Maissen, A. and De Semet, C. A. M., August 1995, a€?Comparison of Concrete Beams Prestressed with Carbon Fiber- Reinforced Plastic and Steel Strands,a€? Non-Metallic (FRP) Reinforcement for  Concrete Structures, Second International RILEM Symposium (FRPRCS), Ghent, Belgium, pp. 430-439. style="text-align: left;">9. Naaman,A. E. and Jeong, S. M., August 1995, a€?Structural Ductility of Concrete Beams Prestressed with FRP Tendons,a€? Non-Metallic (FRP) Reinforcement for Concrete Structures, Second  International RILEM Symposium (FRPRCS), Ghent,  Belgium, pp. 379-386.
机译:style =“ text-align:left;”>本文介绍了碳纤维增强聚合物(CFRP)筋预应力混凝土箱形梁的挠曲响应的实验和分析研究的结果。Diversified Composites Inc.(DCI)进行了三种试验公路桥梁模型。每个桥梁模型都包含两个使用DCI筋预拉伸的预制混凝土箱形梁。在其中一种桥梁模型中,还使用12条未粘结的DCI后张预应力筋对箱形梁进行预应力。在第二个桥梁模型中,箱形梁没有设置后张筋。第三种桥梁模型包括箱形梁,该箱形梁在没有任何力的情况下提供了12条未粘结的筋。这项研究由预测参数组成,例如DCI肌腱的传输长度,极限载荷,挠度,后张拉力,应变和能量比。本文介绍了实验结果和分析结果的比较。据观察,DCI肌腱的测量传输长度范围是公称肌腱直径的25到32倍。与其他两个桥梁模型相比,包括使用预张紧和未粘结的后张预应力筋预应力的箱形梁的桥梁模型导致更高的承载能力和更低的延展性。实验值和分析值之间的紧密一致性表明,在分析CFRP箱梁桥模型中采用应变控制方法的准确性。 >参考 style =“ text-align:left;”> 1。 ACT委员会440,1996,用于混凝土结构的纤维增强塑料(FRP)增强的最新报告(ACT 440R-96),美国混凝土研究所,密西根州法明顿希尔斯,65页 style =“ text-align:left;”> 2。 Hindi,A.,MacGregor,R.,ME Kreger和JE,Breen,1995,target =“ _ blank” title =“ a ??增强后张力的箱形箱梁桥的强度和延展性,a? ” href =“ http://dx.doi.org/10.14359/1472”> a?增强后张力的箱形箱梁桥的强度和延展性, ACI结构期刊,第92卷,否1月,2月,第33-44页。 style =“ text-align:left;”> 3。 Taly,N.,1998年,《现代公路桥梁的设计》,McGraw Hill公司,纽约,纽约,第382-487页。 style =“ text-align:left;”> 4。加藤,T。和林田,N.,1993,带有CFRP筋的预应力混凝土梁的弯曲特性,(ACI SP-138),美国混凝土研究所,密西根州法明顿希尔斯,第41-440页。 5.H.Mutsuyoshi和H.Machida,1993年,《使用FRP作为外部电缆的预应力混凝土梁的行为》(ACI SP-138),美国混凝土研究所,密西根州法明顿希尔斯,1993年,第401-418页。 style =“ text-align:left;”> 6。 Grace,N。F.和Sayed,G。A.,1997,“外部/内部预应力复合桥系统的性能”,a。第三届国际混凝土结构非金属(FRP)研讨会,日本札幌V.2,第671-678页。 style =“ text-align:left;”> 7。 Grace,NF,Enomoto,T.,Abdel-Sayed,G.,Yagi,K.,and Collavino,L.,2003,target =“ _ blank” title =“ a?比例尺CFRP / CFCC双T形桥梁,“” =“ =” http://dx.doi.org/10.15554/pcij.07012003.120.139“>全部CFRP /的试验研究和分析/ CFCC双三通桥梁,一个? PCI Journal,V。48,第4号,七月至八月,第120-139页。 style =“ text-align:left;”> 8。 Maissen,A.和De Semet,C. A. M.,1995年8月,“用碳纤维增强塑料和钢绞线预应力混凝土梁的比较”,a。用于混凝土结构的非金属(FRP)增强,第二届国际RILEM研讨会(FRPRCS),比利时根特,第430-439页。 style =“ text-align:left;”> 9。纳曼E. and Jeong,S. M.,1995年8月,“用FRP筋预应力的混凝土梁的结构延性,a”。用于混凝土结构的非金属(FRP)增强,第二届国际RILEM研讨会(FRPRCS),比利时根特,第379-386页。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号