首页> 外文期刊>Structural Dynamics >Influence of cathode geometry on electron dynamics in an ultrafast electron microscope
【24h】

Influence of cathode geometry on electron dynamics in an ultrafast electron microscope

机译:阴极几何形状对超快电子显微镜中电子动力学的影响

获取原文
           

摘要

Efforts to understand matter at ever-increasing spatial and temporal resolutions have led to the development of instruments such as the ultrafast transmission electron microscope (UEM) that can capture transient processes with combined nanometer and picosecond resolutions. However, analysis by UEM is often associated with extended acquisition times, mainly due to the limitations of the electron gun. Improvements are hampered by tradeoffs in realizing combinations of the conflicting objectives for source size, emittance, and energy and temporal dispersion. Fundamentally, the performance of the gun is a function of the cathode material, the gun and cathode geometry, and the local fields. Especially shank emission from a truncated tip cathode results in severe broadening effects and therefore such electrons must be filtered by applying a Wehnelt bias. Here we study the influence of the cathode geometry and the Wehnelt bias on the performance of a photoelectron gun in a thermionic configuration. We combine experimental analysis with finite element simulations tracing the paths of individual photoelectrons in the relevant 3D geometry. Specifically, we compare the performance of guard ring cathodes with no shank emission to conventional truncated tip geometries. We find that a guard ring cathode allows operation at minimum Wehnelt bias and improve the temporal resolution under realistic operation conditions in an UEM. At low bias, the Wehnelt exhibits stronger focus for guard ring than truncated tip cathodes. The increase in temporal spread with bias is mainly a result from a decrease in the accelerating field near the cathode surface. Furthermore, simulations reveal that the temporal dispersion is also influenced by the intrinsic angular distribution in the photoemission process and the initial energy spread. However, a smaller emission spot on the cathode is not a dominant driver for enhancing time resolution. Space charge induced temporal broadening shows a close to linear relation with the number of electrons up to at least 10 000 electrons per pulse. The Wehnelt bias will affect the energy distribution by changing the Rayleigh length, and thus the interaction time, at the crossover.
机译:努力以越来越高的空间和时间分辨率来理解物质,导致了诸如超快透射电子显微镜(UEM)之类的仪器的发展,该仪器可以捕获纳米和皮秒分辨率组合的瞬态过程。但是,由于电子枪的局限性,UEM进行的分析通常会延长采集时间。在实现相互矛盾的目标(光源大小,发射率以及能量和时间色散)的组合时,折衷阻碍了改进。从根本上说,电子枪的性能取决于阴极材料,电子枪和阴极的几何形状以及局部场。尤其是从截短的尖端阴极发出的小腿发射会导致严重的展宽效应,因此必须通过施加Wehnelt偏压来过滤此类电子。在这里,我们研究了阴极几何形状和Wehnelt偏置对热电子配置中的光电子枪性能的影响。我们将实验分析与有限元模拟相结合,以追踪相关3D几何中各个光电子的路径。具体来说,我们将无柄发射的保护环阴极的性能与传统的截头尖端几何形状进行了比较。我们发现,保护环阴极允许在最小Wehnelt偏置下运行,并提高了UEM中实际运行条件下的时间分辨率。在低偏压下,韦纳特电极对保护环的聚焦要强于截头状的阴极。具有偏差的时间扩展的增加主要是由于阴极表面附近加速场的减小所致。此外,仿真表明,时间色散还受光发射过程中的固有角分布和初始能量散布的影响。但是,阴极上较小的发射点并不是提高时间分辨率的主要驱动力。空间电荷引起的时间展宽与每脉冲至少1万个电子的电子数量显示出近乎线性的关系。 Wehnelt偏置将通过改变交叉点处的瑞利长度以及交互时间来影响能量分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号