...
首页> 外文期刊>Shiraz University of Medical Sciences >Dynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint
【24h】

Dynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint

机译:考虑自撞击关节约束的双摆摆腿运动的动力学与规律

获取原文
           

摘要

Background: Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion. Objective   : The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modeling the swing leg as a SIDP. This paper also presents the control design for a SIDP by a nonlinear model-based control method. To achieve this goal, the available data of normal human gait will be taken as the desired trajectories of the hip and knee joints. Method:     The model is characterized by the constraint that occurs at the knee joint (the lower joint of the model) in both dynamic modeling and control design. Since the system dynamics is nonlinear, the MIMO Input-Output Feedback Linearization method will be employed for control purposes. Results:     The first constraint in forward impact simulation happens at 0.5 rad where the speed of the upper link is increased to 2.5 rad/sec. and the speed of the lower link is reduced to -5 rad/sec. The subsequent constraints occur rather moderately. In the case of both backward and forward constraints simulation, the backward impact occurs at -0.5 rad and the speeds of the upper and lower links increase to 2.2 and 1.5 rad/sec., respectively. Conclusion:   The designed controller performed suitably well and regulated the system accurately.
机译:背景:尽管成功地进行了自动冲击双摆(SIDP)的动态仿真(作为人形机器人的腿或手臂研究),但有关控制单腿运动的信息有限。目标  :这项研究的主要目的是通过将摆动腿建模为SIDP,提高哺乳动物腿部运动的可靠性,并建立更接近自然运动的精细模型。本文还提出了一种基于非线性模型的控制方法对SIDP的控制设计。为了实现这一目标,将正常人的步态的可用数据作为髋关节和膝关节的期望轨迹。方法:  该模型的特征是在动态建模和控制设计中都出现在膝关节(模型的下部关节)处的约束。由于系统动力学是非线性的,因此将采用MIMO输入输出反馈线性化方法进行控制。结果:   前向碰撞仿真中的第一个约束发生在0.5 rad处,其中上链速度提高到2.5 rad / sec。下部链接的速度降低到-5 rad / sec。随后的约束相当适度地发生。在后向和前向约束模拟的情况下,后向冲击发生在-0.5 rad处,上,下连杆的速度分别增加到2.2和1.5 rad / sec。结论:设计的控制器性能良好,并可以精确地调节系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号