...
首页> 外文期刊>Science Advances >Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol
【24h】

Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol

机译:嗜热厌氧菌中独特的基因盒有助于纤维素和单糖同时转化为丁醇

获取原文

摘要

The demand for cellulosic biofuels is on the rise because of the anticipation for sustainable energy and less greenhouse gas emissions in the future. However, production of cellulosic biofuels, especially cellulosic butanol, has been hampered by the lack of potent microbes that are capable of converting cellulosic biomass into biofuels. We report a wild-type Thermoanaerobacterium thermosaccharolyticum strain TG57, which is capable of using microcrystalline cellulose directly to produce butanol (1.93 g/liter) as the only final product (without any acetone or ethanol produced), comparable to that of engineered microbes thus far. Strain TG57 exhibits significant advances including unique genes responsible for a new butyrate synthesis pathway, no carbon catabolite repression, and the absence of genes responsible for acetone synthesis (which is observed as the main by-product in most Clostridium strains known today). Furthermore, the use of glucose analog 2-deoxyglucose posed a selection pressure to facilitate isolation of strain TG57 with deletion/silencing of carbon catabolite repressor genes—the ccr and xylR genes—and thus is able to simultaneously ferment glucose, xylose, and arabinose to produce butanol (7.33 g/liter) as the sole solvent. Combined analysis of genomic and transcriptomic data revealed unusual aspects of genome organization, numerous determinants for unique bioconversions, regulation of central metabolic pathways, and distinct transcriptomic profiles. This study provides a genome-level understanding of how cellulose is metabolized by T. thermosaccharolyticum and sheds light on the potential of competitive and sustainable biofuel production.
机译:由于对可持续能源的期望以及未来减少温室气体的排放,对纤维素生物燃料的需求正在上升。然而,由于缺乏能够将纤维素生物质转化为生物燃料的有效微生物,纤维素生物燃料,特别是纤维素丁醇的生产受到了阻碍。我们报告了野生型嗜热厌氧嗜热气单胞菌菌株TG57,它能够直接使用微晶纤维素生产丁醇(1.93克/升)作为唯一的最终产品(不生产任何丙酮或乙醇),与迄今为止的工程微生物相当。 TG57菌株显示出重大进展,其中包括负责新丁酸合成途径的独特基因,无碳分解代谢物阻遏作用,以及缺少负责丙酮合成的基因(在当今已知的大多数梭菌菌株中,丙酮是主要副产物)。此外,使用葡萄糖类似物2-脱氧葡萄糖产生了选择压力,以促进菌株TG57的分离以及碳分解代谢物阻遏物基因(ccr和xylR基因)的缺失/沉默,因此能够同时发酵葡萄糖,木糖和阿拉伯糖。生产丁醇(7.33克/升)作为唯一溶剂。基因组和转录组数据的综合分析揭示了基因组组织的不同寻常的方面,许多决定独特生物转化,调节中央代谢途径和独特转录组特征的因素。这项研究提供了基因组水平上的知识,了解纤维素如何被热解糖衣藻代谢,并阐明了竞争性和可持续性生物燃料生产的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号