...
首页> 外文期刊>Online Journal of Public Health Informatics >Niche Modeling of Dengue Fever Using Remotely Sensed Environmental Factors and BRT
【24h】

Niche Modeling of Dengue Fever Using Remotely Sensed Environmental Factors and BRT

机译:利用遥感环境因素和BRT对登革热进行小生境建模

获取原文
           

摘要

Objective In this paper we used Boosted Regression Tree analysis coupled with environmental factors gathered from satellite data, such as temperature, elevation, and precipitation, to model the niche of Dengue Fever (DF) in Colombia. Introduction Dengue Fever (DF) is a vector-borne disease of the flavivirus family carried by the Aedes aegypti mosquito, and one of the leading causes of illness and death in tropical regions of the world. Nearly 400 million people become infected each year, while roughly one-third of the world’s population live in areas of risk. Dengue fever has been endemic to Colombia since the late 1970s and is a serious health problem for the country with over 36 million people at risk. We used the Magdalena watershed of central Colombia as the site for this study due to its natural separation from other geographical regions in the country, its wide range of climatic conditions, the fact that it includes the main urban centers in Colombia, and houses 80% of the country’s population. Advances in the quality and types of remote sensing (RS) satellite imagery has made it possible to enhance or replace the field collection of environmental data such as precipitation, temperature, and land use, especially in remote areas of the world such as the mountainous areas of Colombia. We modeled the cases of DF by municipality with the environmental factors derived from the satellite data using boosted regression tree analysis. Boosted regression tree analysis (BRT), has proven useful in a wide range of studies, from predicting forest productivity to other vector-borne diseases such as Leishmaniosis, and Crimean-Congo hemorrhagic fever. Using this framework, we set out to determine what are the differences between using presence/absence and case counts of DF in this type of analysis? Methods We combined data on Dengue fever cases downloaded from the Instituto Nacional de Salud (INS) Programa SIVIGILA INS site with population data downloaded from the 2005 General Census administered by the National Administrative Department of Statistics (Departamento Administrativo Nacional de Estadística, DANE) and projected to 2012–2014 levels. We acquired remote sensing data from the National Aeronautics and Space Administration (NASA) data servers for each day of the study period. Imagery for each environmental variable was composited to reduce the effects of cloud cover and to match the ISO Week Date format reporting of the case data. We aggregated these weekly composite images for each variable using GIS to create annual minimum, maximum, and mean for a raster cell. These data were further aggregated to the municipality level using the GIS, again for minimum, maximum, and mean. Land use and elevation were only downloaded for one period given they change very little over time. The BRT analysis was conducted twice: once using the Bernoulli family of presence/absence and again using the Poisson family of actual case counts. In the first analysis (Bernoulli), any municipality reporting one or more cases of DF in the year was coded as having disease “presence”, while all others were coded as not having disease “absence”. The BRT model was run, using a twenty-five percent hold out of the data as a testing set, for each year. In the second analysis (Poisson), the only change to the models consisted of replacing the presence/absence data with the actual cases of reported DF within the municipality. The Poisson family was chosen in the model since the count data were highly skewed. Results We calculated RMSE and Pearson r values for each of the three years. The Poisson model out-performed the Bernoulli model across all years. The RMSE values were considerably lower for the Poisson model compared to the Bernoulli model, reflecting a better model fit. The Pearson r values were higher for the Poisson model compared to the Bernoulli model, again across all three years. We created maps to compare Cases with the Poisson and the Bernoulli results. The maps shown in the figure reflect the results for 2012. The left panel represents the cases per 10,000 population per square kilometer for each municipality. The dark green color represents very low ratios of DF, while the red color reflects a higher incidence of DF. All maps used the same classification as the reported cases map for comparison, with an additional symbol (black) used for values outside the reported cases range. Conclusions Using actual reported case data and the Poisson function within the BRT functions created by Elith et al. and the gbm package in R, we show that the differences between using presence/absence and case counts of DF in a BRT analysis gives a clearer picture of the spatial distribution of DF. By using readily available and freely accessible data, we have shown that practitioners both within and outside of Colombia can quickly create accurate maps of annual DF incidence. The methods described here could also be extended to other regions and diseases,
机译:目的在本文中,我们采用了增强回归树分析方法,并结合了从卫星数据中收集到的环境因素(例如温度,海拔高度和降水),对哥伦比亚的登革热(DF)生态位进行了建模。简介登革热(DF)是由埃及伊蚊(Aedes aegypti蚊)携带的黄病毒家族的媒介传播疾病,是世界热带地区疾病和死亡的主要原因之一。每年有将近4亿人被感染,而世界上约有三分之一的人口生活在危险地区。自1970年代后期以来,登革热一直是哥伦比亚的特有疾病,对于该国超过3600万高危人群来说,这是一个严重的健康问题。我们将哥伦比亚中部的马格达莱纳(Magdalena)分水岭作为该研究的地点,因为它与该国其他地理区域自然隔离,气候条件广泛,而且它包括哥伦比亚的主要城市中心,并且房屋有80%该国人口的百分比。遥感(RS)卫星图像的质量和类型的进步使得有可能增强或替换诸如降水,温度和土地利用等环境数据的现场收集,尤其是在世界偏远地区(如山区)哥伦比亚。我们使用增强的回归树分析方法,根据市政当局利用从卫星数据得出的环境因素对DF案例进行了建模。增强回归树分析(BRT)已被证明在从预测森林生产力到其他媒介传播疾病(如利什曼病和克里米亚-刚果出血热)的广泛研究中有用。使用该框架,我们开始确定在这种类型的分析中使用DF的存在/不存在和DF的计数之间有什么区别?方法我们结合了从国立萨鲁德民族研究所(INS)的SIVIGILA INS网站下载的登革热病例数据与从国家统计局(DANE)的国家统计局管理的2005年总体普查中下载的人口数据进行了合并,并进行了预测达到2012-2014年的水平。在研究期间的每一天,我们都从美国国家航空航天局(NASA)数据服务器获取了遥感数据。每个环境变量的图像都经过合成,以减少云量的影响并与案例数据的ISO周日期格式报告相匹配。我们使用GIS汇总了每个变量的每周合成图像,以创建栅格像元的年度最小值,最大值和平均值。再次使用GIS将这些数据进一步汇总到市政级别,以获取最小,最大和均值。土地使用和海拔高度仅会下载一次,因为它们随时间的变化很小。 BRT分析进行了两次:一次使用存在或不存在的伯努利家族,另一次使用实际病例数的泊松家族。在第一个分析中(伯努利),当年报告一个或多个DF病例的任何市镇都被编码为疾病“存在”,而所有其他市镇则被编码为没有疾病“不存在”。运行了BRT模型,每年使用25%的数据作为测试集。在第二项分析(泊松)中,对模型的唯一更改包括用市内报告的DF的实际案例替换存在/不存在数据。由于计数数据高度偏斜,因此在模型中选择了Poisson家族。结果我们计算了三年中每一年的RMSE和Pearson r值。在所有年份中,泊松模型均优于伯努利模型。与伯努利模型相比,泊松模型的RMSE值要低得多,这表明模型拟合效果更好。与伯努利模型相比,泊松模型的Pearson r值在过去三年中都更高。我们创建了地图,以将Cases与Poisson和Bernoulli结果进行比较。图中的地图反映了2012年的结果。左侧面板代表每个城市的每10,000人口每平方千米的病例。深绿色表示DF的比率非常低,而红色表示DF的发生率较高。所有图使用与报告病例图相同的分类进行比较,并为报告病例范围之外的值使用附加符号(黑色)。结论在Elith等人创建的BRT函数中使用实际报告的病例数据和Poisson函数。以及R中的gbm软件包,我们证明了在BRT分析中使用DF的存在与否与DF的计数之间的差异可以更清楚地了解DF的空间分布。通过使用随时可用且可自由访问的数据,我们表明,哥伦比亚境内外的从业人员都可以快速创建年度DF发生率的准确地图。这里描述的方法还可以扩展到其他地区和疾病,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号