首页> 外文期刊>Ocean Science Discussions >Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean
【24h】

Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean

机译:卫星测高,Argo浮标和卫星重力分析的流域尺度海平面预算:以北大西洋为例

获取原文
           

摘要

In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance–covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8?mm?yr?1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance–covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96?degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90?degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1?mm?yr?1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10–20?% is applied; however, the performance of the DDK5-filtered solution strongly depends on the orientation of the polygon due to residual striping. In 7 of 10 sub-basins, the budget of the annual cycle is closed, using the DDK5-filtered CSR or the Wiener-filtered ITSG solutions. The Wiener-filtered 60 and 96?degree CSR solutions, in combination with Argo, lack amplitude and suffer from what appears to be hydrological leakage in the Amazon and Sahel regions. After reducing the trend, the semiannual and the annual signals, 24–53?% of the residual variance in altimetry-derived sea level time series is explained by the combination of Argo steric sea levels and the Wiener-filtered ITSG MC. Based on this, we believe that the best overall solution for the MC of the sub-basin-scale budgets is the Wiener-filtered ITSG gravity fields. The interannual variability is primarily a steric signal in the North Atlantic Ocean, so for this the choice of filter and gravity field solution is not really significant.
机译:在本研究中,这是首次尝试根据年周期的趋势和幅度在次流域规模上关闭海平面预算。我们还比较了去除趋势,半年度和年度信号后的剩余时间序列。为了获得高程误差和Argo误差,使用相关函数计算完全方差-协方差矩阵,并将其误差完全传播。对于测高仪,我们应用了地理上依赖的间歇偏差[Ablain et al。(2015)],这导致趋势差异高达0.8?mm?yr ?1 。由于Argo浮标测量值是不均匀间隔的,因此在进行平均之前,首先将目标海平面客观地插值到网格上。对于重力恢复和气候实验(GRACE),重力场使用全方差-协方差矩阵传播误差并统计过滤重力场。我们使用四种不同的滤波重力场解决方案,并确定哪种后处理策略最适合预算关闭。作为参考,使用标准的96度密集解相关内核5(DDK5)过滤的空间研究中心(CSR)解决方案来计算质量分量(MC)。比较了两种各向异性Wiener过滤的CSR解决方案(最高温度分别为60和96)和Wiener过滤的90°ITSG解决方案。计算北大西洋10个多边形的预算,定义方式是使MC加上空间海平面趋势的误差保持在1?mm?yr ?1 之内。在CSR重力场上使用各向异性Wiener滤波器扩展到球谐度96时,就趋势而言,有可能关闭10个子流域中9个流域的海平面预算。如果应用了冰川等静压调整(GIA)校正误差为10–20%的数据,则经过Wiener滤波的理论大地测量与卫星测绘研究所(ITSG)和标准DDK5滤波的CSR解决方案也会关闭趋势预算。但是,DDK5滤波后的解决方案的性能在很大程度上取决于由于残留条带而造成的多边形方向。在10个子流域中的7个子流域中,使用DDK5过滤的CSR或Wiener过滤的ITSG解决方案来关闭年度预算。经过维纳过滤的60和96度CSR解决方案与Argo结合使用时,幅度不大,并且遭受亚马逊和萨赫勒地区水文渗漏的困扰。减小趋势后,通过Argo空间海平面和经过Wiener滤波的ITSG MC的组合,可以解释半年和年度信号,即海拔高度海平面时间序列中剩余方差的24-53%。基于此,我们认为,针对次流域规模预算中MC的最佳整体解决方案是经过Wiener滤波的ITSG重力场。年际变化主要是北大西洋的空间信号,因此,对于滤波器和重力场解决方案的选择并不十分重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号