首页> 外文期刊>Ocean Science Discussions >Numerical simulation and decomposition of kinetic energies in the Central Mediterranean Sea: insight on mesoscale circulation and energy conversion
【24h】

Numerical simulation and decomposition of kinetic energies in the Central Mediterranean Sea: insight on mesoscale circulation and energy conversion

机译:地中海中部动能的数值模拟和分解:中尺度环流和能量转换的见解

获取原文
           

摘要

The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean Sea has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions composing the model domain, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical the kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the stable and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.
机译:2008年1月至2010年12月,通过数值模拟研究了地中海中部涡流和平均动能的时空变化,主要是量化了中尺度动力学及其与物理强迫的关系。为了了解能量的重新分配过程,已对斜压能量转换进行了分析,提出了有关该区域中尺度活动驱动因素的假设。使用的海洋模型基于水平分辨率为1/32°的普林斯顿海洋模型。通过使用欧洲中距离天气预报中心运营分析提供的预测模型海面温度和大气变量,通过标准体积公式交互式计算地表动量和浮力通量。在其横向边界处,该模型是单向嵌套在地中海预测系统运营产品中的。模型域已细分为四个子区域:撒丁岛航道和第勒尼安海南部,西西里航道,突尼斯东部陆架和利比亚海。在组成模型域的四个子区域中,每个区域的涡流和平均动能的时间演化都得到了分析,表现出不同的行为。在年尺度上和前5 m深度以内,涡动能约占整个域总动能的60%,这证实了该区域中表面电流的强中尺度性质。分析表明,该模型很好地再现了已知的主要流域环流特征的路径和时间行为。从数值结果和直接观测中,还首次发现了新的中尺度结构,如Pantelleria Vortex和Medina Gyre。经典的动能分解(涡旋和均值)可以描绘和量化该区域中环流的稳定和波动部分,并可以根据中尺度活动的相对强度和绝对强度来区分四个子区域。此外,斜压能量转换项表明,由于斜压不稳定,撒丁岛海峡的中尺度活动明显大于其他次区域,而能量转换的负号表示能量从涡流动力学转移夏季,仅记录了西西里海峡表层的涡流可用势能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号