首页> 外文期刊>Reviews on Advanced Materials Science >Bridging the Gap between Computational and Experimantal Length Scales:a Review on Nano-scale Plasticity
【24h】

Bridging the Gap between Computational and Experimantal Length Scales:a Review on Nano-scale Plasticity

机译:弥合计算和实验长度尺度之间的差距:纳米尺度可塑性的审查。

获取原文
           

摘要

The results of both experimental studies and molecular dynamics simulations indicate that crystals exhibit strong size effects at the sub-micron scale: smaller is stronger. Until recently, experimental aspects of nano-scale deformation involved the effects of strain gradients, constraints of neighboring layers, grain boundaries, etc., which were key factors in observed size effects. Even without experimental constraints, many computational studies find that yield strength depends on sample size through a power relationship. Both experimental and computational results suggest that a fundamentally different plasticity mechanism might operate at the length scale of material's microstructure. In this work a brief review of some of these works is presented and compared with the results of our gold nanopillar micro-compression experiments, which were found to deform at nearly 50% of theoretical shear strength. To explain the observed size effect, we introduce our phenomenological model of hardening by dislocation starvation.
机译:实验研究和分子动力学模拟的结果都表明,晶体在亚微米尺度上表现出强大的尺寸效应:越小越强。直到最近,纳米尺度变形的实验方面还涉及应变梯度,相邻层的约束,晶界等的影响,这是观察到的尺寸效应的关键因素。即使没有实验约束,许多计算研究也发现屈服强度取决于通过幂函数关系的样本大小。实验和计算结果均表明,根本不同的可塑性机制可能在材料的微观结构的长度尺度上起作用。在这项工作中,对其中一些工作进行了简要回顾,并与我们的金纳米柱微压缩实验的结果进行了比较,发现该实验在理论剪切强度的近50%处发生变形。为了解释观察到的尺寸效应,我们引入了位错饥饿硬化的现象学模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号