首页> 外文期刊>Remote Sensing >Development of a Snow Depth Estimation Algorithm over China for the FY-3D/MWRI
【24h】

Development of a Snow Depth Estimation Algorithm over China for the FY-3D/MWRI

机译:FY-3D / MWRI在中国的雪深估计算法的开发

获取原文

摘要

Launched on 15 November 2017, China’s FengYun-3D (FY-3D) has taken over prime operational weather service from the aging FengYun-3B (FY-3B). Rather than directly implementing an FY-3B operational snow depth retrieval algorithm on FY-3D, we investigated this and four other well-known snow depth algorithms with respect to regional uncertainties in China. Applicable to various passive microwave sensors, these four snow depth algorithms are the Environmental and Ecological Science Data Centre of Western China (WESTDC) algorithm, the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) algorithm, the Chang algorithm, and the Foster algorithm. Among these algorithms, validation results indicate that FY-3B and WESTDC perform better than the others. However, these two algorithms often result in considerable underestimation for deep snowpack (greater than 20 cm), while the other three persistently overestimate snow depth, probably because of their poor representation of snowpack characteristics in China. To overcome the retrieval errors that occur under deep snowpack conditions without sacrificing performance under relatively thin snowpack conditions, we developed an empirical snow depth retrieval algorithm suite for the FY-3D satellite. Independent evaluation using weather station observations in 2014 and 2015 demonstrates that the FY-3D snow depth algorithm’s root mean square error (RMSE) and bias are 6.6 cm and 0.2 cm, respectively, and it has advantages over other similar algorithms.
机译:中国的风云3D(FY-3D)于2017年11月15日发射,已从老化的风云3B(FY-3B)接管了主要的气象服务。我们没有直接在FY-3D上实现FY-3B的雪深检索算法,而是针对中国的区域不确定性研究了该雪深和其他四种众所周知的雪深算法。这四种雪深算法适用于各种无源微波传感器,分别是中国西部环境与生态科学数据中心(WESTDC)算法,先进的地球观测系统微波扫描辐射计(AMSR-E)算法,Chang算法以及福斯特算法。在这些算法中,验证结果表明FY-3B和WESTDC的性能优于其他算法。但是,这两种算法通常会导致对深积雪(大于20厘米)的低估,而其他三种算法却持续高估了积雪的深度,这可能是因为它们在中国的积雪特征表现不佳。为了克服在深积雪条件下发生的取回误差而又不牺牲相对薄积雪条件下的性能,我们为FY-3D卫星开发了经验性积雪深度取回算法套件。使用2014年和2015年气象站观测值进行的独立评估表明,FY-3D雪深算法的均方根误差(RMSE)和偏差分别为6.6 cm和0.2 cm,与其他类似算法相比,它具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号