...
首页> 外文期刊>Micro and Nano Systems Letters >A comprehensive review on convex and concave corners in silicon bulk micromachining based on anisotropic wet chemical etching
【24h】

A comprehensive review on convex and concave corners in silicon bulk micromachining based on anisotropic wet chemical etching

机译:基于各向异性湿化学刻蚀的硅体微加工中凸角和凹角的综述

获取原文

摘要

Wet anisotropic etching based silicon micromachining is an important technique to fabricate freestanding (e.g. cantilever) and fixed (e.g. cavity) structures on different orientation silicon wafers for various applications in microelectromechanical systems (MEMS). {111} planes are the slowest etch rate plane in all kinds of anisotropic etchants and therefore, a prolonged etching always leads to the appearance of {111} facets at the sidewalls of the fabricated structures. In wet anisotropic etching, undercutting occurs at the extruded corners and the curved edges of the mask patterns on the wafer surface. The rate of undercutting depends upon the type of etchant and the shape of mask edges and corners. Furthermore, the undercutting takes place at the straight edges if they do not contain {111} planes. {100} and {110} silicon wafers are most widely used in MEMS as well as microelectronics fabrication. This paper reviews the fabrication techniques of convex corner on {100} and {110} silicon wafers using anisotropic wet chemical etching. Fabrication methods are classified mainly into two major categories: corner compensation method and two-steps etching technique . In corner compensation method, extra mask pattern is added at the corner. Due to extra geometry, etching is delayed at the convex corner and hence the technique relies on time delayed etching. The shape and size of the compensating design strongly depends on the type of etchant, etching depth and the orientation of wafer surface. In this paper, various kinds of compensating designs published so far are discussed. Two-step etching method is employed for the fabrication of perfect convex corners. Since the perfectly sharp convex corner is formed by the intersection of {111} planes, each step of etching defines one of the facets of convex corners. In this method, two different ways are employed to perform the etching process and therefore can be subdivided into two parts. In one case, lithography step is performed after the first step of etching, while in the second case, all lithography steps are carried out before the etching process, but local oxidation of silicon (LOCOS) process is done after the first step of etching. The pros and cons of all techniques are discussed.
机译:基于湿各向异性蚀刻的硅微机械加工是在微机电系统(MEMS)的各种应用中在不同方向的硅晶片上制造独立结构(例如悬臂)和固定结构(例如空腔)的重要技术。在所有种类的各向异性蚀刻剂中,{111}平面是最慢的蚀刻速率平面,因此,长时间的蚀刻总是导致在制造结构的侧壁上出现{111}刻面。在湿法各向异性蚀刻中,在晶片表面上掩模图案的挤压角和弯曲边缘处发生底切。底蚀的速率取决于蚀刻剂的类型以及掩模边缘和角落的形状。此外,如果底切不包含{111}平面,则在直边处进行底切。 {100}和{110}硅晶片最广泛用于MEMS以及微电子制造中。本文综述了利用各向异性湿化学刻蚀在{100}和{110}硅晶片上制造凸角的技术。制造方法主要分为两大类:拐角补偿方法和两步蚀刻技术。在拐角补偿方法中,在拐角处添加了额外的掩模图案。由于额外的几何形状,蚀刻在凸角处延迟,因此该技术依赖于时间延迟的蚀刻。补偿设计的形状和大小在很大程度上取决于蚀刻剂的类型,蚀刻深度和晶圆表面的方向。在本文中,讨论了迄今为止发布的各种补偿设计。采用两步刻蚀法制造完美的凸角。由于完全尖锐的凸角是由{111}平面的交点形成的,因此蚀刻的每个步骤都定义了凸角的小平面之一。在该方法中,采用两种不同的方式来执行蚀刻工艺,因此可以细分为两个部分。在一种情况下,光刻步骤在蚀刻的第一步骤之后执行,而在第二种情况下,所有光刻步骤在蚀刻工艺之前执行,但是硅的局部氧化(LOCOS)工艺在蚀刻的第一步之后执行。讨论了所有技术的利弊。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号