首页> 外文期刊>LIPIcs : Leibniz International Proceedings in Informatics >TC^0 Circuits for Algorithmic Problems in Nilpotent Groups
【24h】

TC^0 Circuits for Algorithmic Problems in Nilpotent Groups

机译:幂等组中算法问题的TC ^ 0电路

获取原文

摘要

Recently, Macdonald et. al. showed that many algorithmic problems for finitely generated nilpotent groups including computation of normal forms, the subgroup membership problem, the conjugacy problem, and computation of subgroup presentations can be done in LOGSPACE. Here we follow their approach and show that all these problems are complete for the uniform circuit class TC^0 - uniformly for all r-generated nilpotent groups of class at most c for fixed r and c. Moreover, if we allow a certain binary representation of the inputs, then the word problem and computation of normal forms is still in uniform TC^0, while all the other problems we examine are shown to be TC^0-Turing reducible to the problem of computing greatest common divisors and expressing them as linear combinations.
机译:最近,麦克唐纳德等。等结果表明,可以在LOGSPACE中完成有限生成的幂等组的许多算法问题,包括正常形式的计算,子组隶属度问题,共轭问题和子组表示形式的计算。在这里,我们遵循他们的方法,证明对于统一电路类别TC ^ 0,所有这些问题都是完全的-对于固定的r和c,对于所有由r生成的幂等类别,至多c类,都是统一的。此外,如果我们允许输入的某种二进制表示形式,那么问题词和标准形式的计算仍然是统一的TC ^ 0,而我们研究的所有其他问题都显示为TC ^ 0-图灵可简化计算最大公约数并将其表示为线性组合的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号