...
首页> 外文期刊>NPJ Microgravity >Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions
【24h】

Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions

机译:低营养条件下模拟微重力和链格内酯对植物养分吸收的拮抗作用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Human-assisted space exploration will require efficient methods of food production. Large-scale farming in presence of an Earth-like atmosphere in space faces two main challenges: plant yield in microgravity and plant nutrition in extraterrestrial soils, which are likely low in nutrients compared to terrestrial farm lands. We propose a plant-fungal symbiosis (i.e. mycorrhiza) as an efficient tool to increase plant biomass production in extraterrestrial environments. We tested the mycorrhization of Solanaceae on the model plant Petunia hybrida using the arbuscular mycorrhizal fungus Rhizophagus irregularis under simulated microgravity (s0-g) conditions obtained through a 3-D random positioning machine. Our results show that s0-g negatively affects mycorrhization and plant phosphate uptake by inhibiting hyphal elongation and secondary branching. However, in low nutrient conditions, the mycorrhiza can still support plant biomass production in s0-g when colonized plants have increased SL root exudation. Alternatively, s0-g in high nutrient conditions boosts tissue-specific cell division and cell expansion and overall plant size in Petunia, which has been reported for other plants species. Finally, we show that the SL mimic molecule rac-GR24 can still induce hyphal branching in vitro under simulated microgravity. Based on these results, we propose that in nutrient limited conditions strigolactone root exudation can challenge the negative microgravity effects on mycorrhization and therefore might play an important role in increasing the efficiency of future space farming.
机译:人类辅助太空探索将需要有效的粮食生产方法。在太空中存在类似于地球的大气层的大规模耕作面临两个主要挑战:微重力下的植物产量和地外土壤中的植物营养,与陆上农田相比,其营养成分可能较低。我们提出了一种植物-真菌共生(即菌根)作为增加地外环境中植物生物量产量的有效工具。我们在通过3-D随机定位仪获得的模拟微重力(s0-g)条件下,使用丛枝菌根真菌不规则根瘤菌在模型植物矮牵牛上测试了茄科的菌落作用。我们的结果表明,s0-g通过抑制菌丝伸长和次级分支而对菌根和植物磷酸盐的吸收产生负面影响。但是,在低营养条件下,当定植的植物的SL根分泌增加时,菌根仍能支持s0-g的植物生物量生产。另外,在高养分条件下,s0-g会促进矮牵牛的组织特异性细胞分裂和细胞扩增以及整体植物大小,这在其他植物物种中已有报道。最后,我们显示SL模拟分子rac-GR24仍然可以在体外模拟微重力下诱导菌丝分支。根据这些结果,我们建议在营养有限的条件下,松果内酯根的渗出可以挑战微重力对菌根的不利影响,因此可能在提高未来太空农业的效率中发挥重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号