...
首页> 外文期刊>Nanoscale Research Letters >Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures
【24h】

Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures

机译:深纳米孔的微滴蚀刻,用于填充自对准的复杂量子结构

获取原文
           

摘要

Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g _((2))(0)? 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μ eV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μ eV in 15-nm-deep to 7.9 μ eV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μ eV which is close to that from single QDs.
机译:无应变的外延量子点(QDs)是通过将AlGaAs表面中的纳米孔的Al局部液滴蚀刻(LDE)与随后的GaAs填充相结合而制成的。整个过程在常规分子束外延(MBE)室中进行。自相关测量建立了具有非常小的相关函数g _((2))(0)的LDE QD的单光子发射。激子发射的0.01。在这里,我们集中于初始孔深度对QD光学性能的影响,目标是创建适合于填充更复杂的纳米结构(如量子点分子(QDM))的深孔。液滴蚀刻的纳米孔的深度由液滴材料的覆盖率和工艺温度控制,其中较高的覆盖率或温度会产生更深的孔。经常在应用中发现的对高量子点均匀性和窄发光线宽的要求限制了工艺温度。在高温下,孔深变得不均匀,线宽在640°C以上迅速增加。使用当前的工艺技术,如果线宽必须保持低于100μeV,我们将确定40 nm孔深度的上限。此外,我们研究了激子精细结构分裂,该分裂从深15 nm的4.6μeV增加到深35 nm的孔的7.9μeV。作为深纳米孔功能化的一个示例,通过填充深度为35 nm的孔来制造自对准垂直堆叠的GaAs QD对。来自堆叠点的激子峰显示的线宽低于100μeV,与单个QD的线宽接近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号