首页> 外文期刊>Engineering >Prediction of Shear Wave Velocity in Underground Layers Using SASW and Artificial Neural Networks
【24h】

Prediction of Shear Wave Velocity in Underground Layers Using SASW and Artificial Neural Networks

机译:基于SASW和人工神经网络的地下剪切波速预测。

获取原文
       

摘要

This research aims at improving the methods of prediction of shear wave velocity in underground layers. We propose and showcase our methodology using a case study on the Mashhad plain in north eastern part of Iran. Geotechnical investigations had previously reported nine measurements of the SASW (Spectral Analysis of Surface Waves) method over this field and above wells which have DHT (Down Hole Test) result. Since SASW utilizes an analytical formula (which suffers from some simplicities and noise) for evaluating shear wave velocity, we use the results of SASW in a trained artificial neural network (ANN) to estimate the un- known nonlinear relationships between SASW results and those obtained by the method of DHT (treated here as real values). Our results show that an appropriately trained neural network can reliably predict the shear wave velocity between wells accurately.
机译:本研究旨在改进预测地下层剪切波速度的方法。我们通过对伊朗东北部马什哈德平原的案例研究提出并展示了我们的方法。岩土工程研究以前曾报告在该领域以及具有DHT(井下测试)结果的井上方对SASW(表面波频谱分析)方法进行了9次测量。由于SASW利用解析公式(存在一些简单性和噪声)来评估剪切波速度,因此我们在经过训练的人工神经网络(ANN)中使用SASW的结果来估计SASW结果与获得的结果之间未知的非线性关系通过DHT方法(此处视为实值)。我们的结果表明,经过适当训练的神经网络可以可靠地预测井之间的剪切波速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号