首页> 外文期刊>Molecular biology of the cell >Cortical Mechanics and Meiosis II Completion in Mammalian Oocytes Are Mediated by Myosin-II and Ezrin-Radixin-Moesin (ERM) Proteins
【24h】

Cortical Mechanics and Meiosis II Completion in Mammalian Oocytes Are Mediated by Myosin-II and Ezrin-Radixin-Moesin (ERM) Proteins

机译:哺乳动物卵母细胞的皮质力学和减数分裂II的完成是由肌球蛋白II和Ezrin-放射蛋白-肌球蛋白(ERM)蛋白介导的。

获取原文
           

摘要

Cell division is inherently mechanical, with cell mechanics being a critical determinant governing the cell shape changes that accompany progression through the cell cycle. The mechanical properties of symmetrically dividing mitotic cells have been well characterized, whereas the contribution of cellular mechanics to the strikingly asymmetric divisions of female meiosis is very poorly understood. Progression of the mammalian oocyte through meiosis involves remodeling of the cortex and proper orientation of the meiotic spindle, and thus we hypothesized that cortical tension and stiffness would change through meiotic maturation and fertilization to facilitate and/or direct cellular remodeling. This work shows that tension in mouse oocytes drops about sixfold during meiotic maturation from prophase I to metaphase II and then increases ~1.6-fold upon fertilization. The metaphase II egg is polarized, with tension differing ~2.5-fold between the cortex over the meiotic spindle and the opposite cortex, suggesting that meiotic maturation is accompanied by assembly of a cortical domain with stiffer mechanics as part of the process to achieve asymmetric cytokinesis. We further demonstrate that actin, myosin-II, and the ERM (Ezrin/Radixin/Moesin) family of proteins are enriched in complementary cortical domains and mediate cellular mechanics in mammalian eggs. Manipulation of actin, myosin-II, and ERM function alters tension levels and also is associated with dramatic spindle abnormalities with completion of meiosis II after fertilization. Thus, myosin-II and ERM proteins modulate mechanical properties in oocytes, contributing to cell polarity and to completion of meiosis.
机译:细胞分裂本质上是机械的,细胞力学是控制伴随细胞周期进展的细胞形状变化的关键决定因素。对称分裂的有丝分裂细胞的机械特性已被很好地表征,而细胞力学对雌性减数分裂惊人的非对称分裂的贡献却知之甚少。哺乳动物卵母细胞通过减数分裂的进程涉及皮质的重构和减数分裂纺锤体的正确定向,因此我们假设皮质张力和刚度将通过减数分裂的成熟和受精而改变,以促进和/或指导细胞的重构。这项工作表明小鼠卵母细胞的张力在减数分裂成熟过程中从前期I到中期II下降约六倍,然后在受精时增加约1.6倍。 II期中期卵呈两极分化,在减数分裂纺锤体的皮层和相反的皮层之间的张力相差约〜2.5倍,这表明减数分裂的成熟伴随着具有更强机械特性的皮质区域的组装,这是实现不对称胞质分裂过程的一部分。我们进一步证明肌动蛋白,肌球蛋白II和ERM(Ezrin / Radixin / Moesin)家族的蛋白质在互补的皮质域中富集并介导哺乳动物卵中的细胞力学。肌动蛋白,肌球蛋白II和ERM功能的操纵会​​改变张力水平,并且还与受精后完成减数分裂II的严重纺锤体异常相关。因此,肌球蛋白II和ERM蛋白调节卵母细胞的机械特性,有助于细胞极性和减数分裂的完成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号