首页> 外文期刊>Molecular biology of the cell >Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons.
【24h】

Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons.

机译:小鼠脑神经元中α和β微管蛋白的可逆多谷氨酰化和微管动力学。

获取原文
           

摘要

The relationship between microtubule dynamics and polyglutamylation of tubulin was investigated in young differentiating mouse brain neurons. Selective posttranslational labeling with [3H]glutamate and immunoblotting with a specific monoclonal antibody (GT335) enabled us to analyze polyglutamylation of both alpha and beta subunits. Nocodazole markedly inhibited incorporation of [3H]glutamate into alpha- and beta-tubulin, whereas taxol had no effect for alpha-tubulin and a stimulating effect for beta-tubulin. These results strongly suggest that microtubule polymers are the preferred substrate for polyglutamylation. Chase experiments revealed the existence of a reversal reaction that, in the case of alpha-tubulin, was not affected by microtubule drugs, suggesting that deglutamylation of this subunit can occur on both polymers and soluble tubulin. Evidence was obtained that deglutamylation of alpha-tubulin operates following two distinct rates depending on the length of the polyglutamyl chain, the distal units (4th-6th) being removed rapidly whereas the proximal ones (1st-3rd) appearing much more resistant to deglutamylation. Partition of glutamylated alpha-tubulin isoforms was also correlated with the length of the polyglutamyl chain. Forms bearing four to six units were recovered specifically in the polymeric fraction, whereas those bearing one to three units were distributed evenly between polymeric and soluble fractions. It thus appears that the slow rate component of the deglutamylation reaction offers to neurons the possibility to maintain a basal level of glutamylated alpha-tubulin in the soluble pool independently of microtubule dynamics. Finally, some differences observed in the glutamylation of alpha- and beta-tubulin suggest that distinct enzymes are involved.
机译:在年轻的分化小鼠脑神经元中研究了微管动力学与微管蛋白多谷氨酰化之间的关系。用[3H]谷氨酸进行选择性翻译后标记,并使用特异性单克隆抗体(GT335)进行免疫印迹,使我们能够分析α和β亚基的聚谷氨酰化。诺考达唑显着抑制[3H]谷氨酸掺入α-和β-微管蛋白,而紫杉醇对α-微管蛋白无作用,对β-微管蛋白无刺激作用。这些结果强烈表明,微管聚合物是聚谷氨酰化的优选底物。大通实验揭示了存在逆向反应,在α-微管蛋白的情况下,不受微管药物的影响,这表明该亚基的脱谷氨酰化作用可同时发生在聚合物和可溶性微管蛋白上。已经获得的证据表明,α-微管蛋白的脱谷氨酰化作用遵循两个不同的速率,具体取决于聚谷氨酰链的长度,其中远端单元(第4-6位)被快速去除,而近端单元(第1-6位)则表现出更高的抗谷氨酰化能力。谷氨酰化的α-微管蛋白同工型的分配也与多谷氨酰链的长度相关。具体地,在聚合物级分中回收具有4至6个单元的形式,而具有1至3个单元的那些形式均匀地分布在聚合物级分和可溶性级分之间。因此,似乎脱谷氨酰化反应的缓慢速率组分向神经元提供了与微管动力学无关地维持可溶性池中谷氨酰化α-微管蛋白的基础水平的可能性。最后,在α-和β-微管蛋白的谷氨酰化中观察到的一些差异表明涉及不同的酶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号