首页> 外文期刊>Micromachines >Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers
【24h】

Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers

机译:单片多自由度(MDoF)电容MEMS加速度计

获取原文
           

摘要

With the continuous advancements in microelectromechanical systems (MEMS) fabrication technology, inertial sensors like accelerometers and gyroscopes can be designed and manufactured with smaller footprint and lower power consumption. In the literature, there are several reported accelerometer designs based on MEMS technology and utilizing various transductions like capacitive, piezoelectric, optical, thermal, among several others. In particular, capacitive accelerometers are the most popular and highly researched due to several advantages like high sensitivity, low noise, low temperature sensitivity, linearity, and small footprint. Accelerometers can be designed to sense acceleration in all the three directions (X, Y, and Z-axis). Single-axis accelerometers are the most common and are often integrated orthogonally and combined as multiple-degree-of-freedom (MDoF) packages for sensing acceleration in the three directions. This type of MDoF increases the overall device footprint and cost. It also causes calibration errors and may require expensive compensations. Another type of MDoF accelerometers is based on monolithic integration and is proving to be effective in solving the footprint and calibration problems. There are mainly two classes of such monolithic MDoF accelerometers, depending on the number of proof masses used. The first class uses multiple proof masses with the main advantage being zero calibration issues. The second class uses a single proof mass, which results in compact device with a reduced noise floor. The latter class, however, suffers from high cross-axis sensitivity. It also requires very innovative layout designs, owing to the complicated mechanical structures and electrical contact placement. The performance complications due to nonlinearity, post fabrication process, and readout electronics affects both classes of accelerometers. In order to effectively compare them, we have used metrics such as sensitivity per unit area and noise-area product. This paper is devoted to an in-depth review of monolithic multi-axis capacitive MEMS accelerometers, including a detailed analysis of recent advancements aimed at solving their problems such as size, noise floor, cross-axis sensitivity, and process aware modeling.
机译:随着微机电系统(MEMS)制造技术的不断进步,惯性传感器(如加速度计和陀螺仪)可以以更小的占位面积和更低的功耗进行设计和制造。在文献中,有几项基于MEMS技术的加速度计设计报告,其中利用了各种转换,例如电容,压电,光学,热等。特别是,电容式加速度计由于具有诸如高灵敏度,低噪声,低温灵敏度,线性和占位面积小等优点而受到最广泛的研究和高度研究。可以将加速度计设计为在所有三个方向(X,Y和Z轴)上感应加速度。单轴加速度计是最常见的,并且通常正交集成并组合为多自由度(MDoF)软件包,用于感测三个方向上的加速度。这种类型的MDoF增加了整个设备的占地面积和成本。它还会导致校准错误,并可能需要昂贵的赔偿。 MDoF加速度计的另一种类型是基于单片集成,并且在解决封装和校准问题方面被证明是有效的。这种单片MDoF加速度计主要分为两类,具体取决于所使用的证明质量的数量。第一类使用多重证明质量,主要优点是零校准问题。第二类使用单个标准质量,这导致具有降低的本底噪声的紧凑型设备。但是,后一类具有较高的横轴灵敏度。由于复杂的机械结构和电触点放置,它还需要非常新颖的布局设计。由于非线性,后期制造过程和读出电子设备而导致的性能复杂性会影响这两类加速度计。为了有效地进行比较,我们使用了度量标准,例如每单位面积的灵敏度和噪声面积乘积。本文致力于深入研究单片多轴电容式MEMS加速度计,包括对旨在解决其尺寸,噪声基底,跨轴灵敏度和过程感知建模等问题的最新进展的详细分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号