首页> 外文期刊>Metabolic Engineering Communications >A comprehensive evaluation of constraining amino acid biosynthesis in compartmented models for metabolic flux analysis
【24h】

A comprehensive evaluation of constraining amino acid biosynthesis in compartmented models for metabolic flux analysis

机译:在代谢通量分析的分隔模型中对约束性氨基酸生物合成的综合评估

获取原文
       

摘要

Recent advances in the availability and applicability of genetic tools for non-conventional yeasts have raised high hopes regarding the industrial applications of such yeasts; however, quantitative physiological data on these yeasts, including intracellular flux distributions, are scarce and have rarely aided in the development of novel yeast applications. The compartmentation of eukaryotic cells adds to model complexity. Model constraints are ideally based on biochemical evidence, which is rarely available for non-conventional yeast and eukaryotic cells. A small-scale model for 13C-based metabolic flux analysis of central yeast carbon metabolism was developed that is universally valid and does not depend on localization information regarding amino acid anabolism. The variable compartmental origin of traced metabolites is a feature that allows application of the model to yeasts with uncertain genomic and transcriptional backgrounds. The presented test case includes the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Hansenula polymorpha . Highly similar flux solutions were computed using either a model with undefined pathway localization or a model with constraints based on curated ( S. cerevisiae ) or computationally predicted ( H. polymorpha ) localization information, while false solutions were found with incorrect localization constraints. These results indicate a potentially adverse effect of universally assuming Saccharomyces- like constraints on amino acid biosynthesis for non-conventional yeasts and verify the validity of neglecting compartmentation constraints using a small-scale metabolic model. The model was specifically designed to investigate the intracellular metabolism of wild-type yeasts under various growth conditions but is also expected to be useful for computing fluxes of other eukaryotic cells.
机译:用于非常规酵母的遗传工具的可用性和适用性方面的最新进展,对此类酵母的工业应用提出了很高的希望。然而,关于这些酵母的定量生理数据,包括细胞内通量分布,是稀缺的,并且很少有助于新型酵母应用的开发。真核细胞的分隔增加了模型的复杂性。理想情况下,模型约束基于生化证据,非常规酵母和真核细胞很少使用。建立了一个基于 13 C的中央酵母碳代谢的代谢通量分析的小规模模型,该模型普遍有效,并且不依赖于氨基酸合成代谢的定位信息。痕量代谢产物的可变区室起源是一种允许将该模型应用于具有不确定基因组和转录背景的酵母的功能。提出的测试用例包括面包酵母酿酒酵母和甲基营养酵母多形汉逊酵母。使用具有不确定路径定位的模型或具有基于策展(S. cerevisiae)或计算预测(H. polymorpha)定位信息的约束条件的模型来计算高度相似的通量解,而发现具有不正确定位约束条件的错误解决方案。这些结果表明,普遍假设类似非常规酵母的酵母菌样限制条件对氨基酸生物合成具有潜在的不利影响,并使用小规模代谢模型验证了忽略分隔限制条件的有效性。该模型是专门设计用来研究野生型酵母在各种生长条件下的细胞内代谢,但也有望用于计算其他真核细胞的通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号