...
首页> 外文期刊>MBio >Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis
【24h】

Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis

机译:比较社区蛋白质组学证明放线菌的糖苷水解酶家族12蛋白的结晶纤维素水解的意想不到的重要性。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

ABSTRACT Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacterium Thermobispora bispora that were highly abundant in the most active consortium. Among the cellulases from T.?bispora , the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite of T.?bispora hydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered. IMPORTANCE Cellulose is the most abundant organic polymer on earth, and its enzymatic hydrolysis is a key reaction in the global carbon cycle and the conversion of plant biomass to biofuels. The glycoside hydrolases that depolymerize crystalline cellulose have been primarily characterized from isolates. In this study, we demonstrate that adapting microbial consortia from compost to grow on crystalline cellulose generated communities whose soluble enzymes exhibit differential abilities to hydrolyze crystalline cellulose. Comparative proteomics of these communities identified a protein of glycoside hydrolase family 12 (GH12), a family of proteins previously observed to primarily hydrolyze soluble substrates, as a candidate that accounted for some of the differences in hydrolytic activities. Heterologous expression confirmed that the GH12 protein identified by proteomics was active on crystalline cellulose and hydrolyzed cellulose by a random mechanism, in contrast to most cellulases that act on the crystalline polymer in a processive mechanism.
机译:摘要糖苷水解酶(GHs)是植物来源的纤维素解聚的关键酶,这是全球碳循环和植物生物量向燃料和化学物质转化的关键过程。有限数量的GH家族通常通过沿着纤维素链的加工机制来水解结晶纤维素。在嗜热纤维素分解微生物群落的培养过程中,观察到从不同谱系回收的上清液的结晶纤维素糖化活性有很大差异。比较社区蛋白质组学从与嗜热双孢菌双孢菌密切相关的种群中鉴定出一组纤维素酶,这些纤维素酶在最活跃的财团中高度丰富。在来自双歧杆菌的纤维素酶中,GH家族12(GH12)蛋白的丰度与结晶纤维素水解活性的变化最密切相关。由于GH12蛋白主要被表征为对可溶性多糖底物有活性的酶,因此这一结果令人惊讶。这套双歧杆菌水解纤维素酶的异源表达和生化特性证实,GH12蛋白在多种结晶纤维素底物上具有最高的活性,并证明它主要通过随机机制水解纤维素链。这项工作表明,应重新考虑GH12蛋白在纤维素分解微生物水解结晶纤维素中的作用。重要事项纤维素是地球上最丰富的有机聚合物,其酶促水解是全球碳循环以及植物生物质向生物燃料转化的关键反应。使结晶纤维素解聚的糖苷水解酶主要从分离物中表征。在这项研究中,我们证明了适应堆肥中的微生物群落以在结晶纤维素产生的社区中生长,这些社区的可溶性酶表现出不同的水解结晶纤维素的能力。这些群落的比较蛋白质组学鉴定了糖苷水解酶家族12(GH12)的蛋白质,该蛋白质家族先前观察到主要水解可溶性底物的蛋白质家族,是解释某些水解活性差异的候选对象。异源表达证实,由蛋白质组学鉴定的GH12蛋白通过随机机制对结晶纤维素和水解纤维素具有活性,这与大多数以加工性机制作用于结晶聚合物的纤维素酶相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号