...
首页> 外文期刊>Materials >In Situ TEM Study of Microstructure Evolution of Zr-Nb-Fe Alloy Irradiated by 800 keV Kr 2+ Ions
【24h】

In Situ TEM Study of Microstructure Evolution of Zr-Nb-Fe Alloy Irradiated by 800 keV Kr 2+ Ions

机译:800 keV Kr 2+离子辐照Zr-Nb-Fe合金组织演变的原位TEM研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The microstructure evolution of Zr-1.1Nb-1.51Fe-0.26Cu-0.72Ni zirconium alloy, irradiated by 800 keV Kr 2+ ions at 585 K using the IVEM-Tandem Facility at Argonne National Laboratory, was observed by in situ transmission electron microscopy. A number of β-Nb precipitates with a body-centered cubic (BCC) structure were distributed in the as-received zirconium alloy with micrometer-size grains. Kr 2+ ion irradiation induced the growth of β-Nb precipitates, which could be attributed to the segregation of the dissolved niobium atoms in the zirconium lattice and the migration to the existing precipitates. The size of precipitates was increased with increasing Kr 2+ ion fluence. During Kr 2+ iron irradiation, the zirconium crystals without Nb precipitates tended to transform to the nanocrystals, which was not observed in the zirconium crystals with Nb nanoparticles. The existing Nb nanoparticles were the key factor that constrained the nanocrystallization of zirconium crystals. The thickness of the formed Zr-nanocrystal layer was about 300 nm, which was consistent with the depth of Kr 2+ iron irradiation. The mechanism of the precipitate growth and the formation of zirconium nanocrystal was analyzed and discussed.
机译:通过Argonne国家实验室的IVEM-串联装置在585 K下用800 keV Kr 2+离子在585 K下辐照Zr-1.1Nb-1.51Fe-0.26Cu-0.72Ni锆合金的显微组织演变,并通过原位透射电子显微镜观察。大量具有体心立方(BCC)结构的β-Nb沉淀物分布在刚收到的具有微米级晶粒的锆合金中。 Kr 2+离子辐照诱导了β-Nb析出物的生长,这可能归因于锆晶格中溶解的铌原子的偏析以及向现有析出物的迁移。随着Kr 2+离子通量的增加,沉淀物的尺寸也增加。在Kr 2+铁辐照期间,没有Nb沉淀的锆晶体倾向于转变为纳米晶体,而在具有Nb纳米颗粒的锆晶体中没有观察到。现有的Nb纳米颗粒是约束锆晶体纳米晶化的关键因素。形成的Zr纳米晶层的厚度为约300nm,这与Kr 2+铁的照射深度一致。分析并讨论了沉淀物生长和锆纳米晶体形成的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号