首页> 外文期刊>Frontiers in Neurorobotics >Molecular quantum robotics: particle and wave solutions, illustrated by “leg-over-leg” walking along microtubules
【24h】

Molecular quantum robotics: particle and wave solutions, illustrated by “leg-over-leg” walking along microtubules

机译:分子量子机器人技术:粒子和波的解决方案,以沿着微管行走的“一条腿”为例

获取原文
           

摘要

Remarkable biological examples of molecular robots are the proteins kinesin-1 and dynein, which move and transport cargo down microtubule “highways,” e.g., of the axon, to final nerve nodes or along dendrites. They convert the energy of ATP hydrolysis into mechanical forces and can thereby push them forwards or backwards step by step. Such mechano-chemical cycles that generate conformal changes are essential for transport on all different types of substrate lanes. The step length of an individual molecular robot is a matter of nanometers but the dynamics of each individual step cannot be predicted with certainty (as it is a random process). Hence, our proposal is to involve the methods of quantum field theory (QFT) to describe an overall reliable, multi–robot system that is composed of a huge set of unreliable, local elements. The methods of QFT deliver techniques that are also computationally demanding to synchronize the motion of these molecular robots on one substrate lane as well as across lanes. Three different challenging types of solutions are elaborated. The impact solution reflects the particle point of view; the two remaining solutions are wave based. The second solution outlines coherent robot motions on different lanes. The third solution describes running waves. Experimental investigations are needed to clarify under which biological conditions such different solutions occur. Moreover, such a nano-chemical system can be stimulated by external signals, and this opens a new, hybrid approach to analyze and control the combined system of robots and microtubules externally. Such a method offers the chance to detect mal-functions of the biological system.
机译:分子机器人的显着生物学例子是kinesin-1和dynein蛋白,它们沿着微管的“高速公路”(例如,轴突)移动和运输货物,并将其运输到最终的神经节或树突。它们将ATP水解的能量转换为机械力,从而可以逐步推动它们前进或后退。产生共形变化的这种机械化学循环对于在所有不同类型的底物泳道上的运输都是必不可少的。单个分子机器人的步长大约是纳米,但是无法确定每个步的动力学(因为这是一个随机过程)。因此,我们的建议是涉及量子场论(QFT)的方法,以描述由大量不可靠的局部元素组成的整体可靠的多机器人系统。 QFT的方法所提供的技术在计算上也要求使这些分子机器人在一个底物通道以及跨通道的运动同步。阐述了三种不同的具有挑战性的解决方案。冲击解决方案反映了粒子的观点;剩下的两个解决方案都是基于波动的。第二种解决方案概述了在不同车道上一致的机器人运动。第三种解决方案描述了运行波。需要进行实验研究以阐明在何种生物学条件下会出现这种不同的溶液。而且,这样的纳米化学系统可以被外部信号刺激,这为在外部分析和控制机器人和微管的组合系统开辟了一种新的混合方法。这种方法提供了检测生物系统功能异常的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号