首页> 外文期刊>Frattura e Integrita Strutturale >The strong formulation finite element method: stability and accuracy
【24h】

The strong formulation finite element method: stability and accuracy

机译:强公式化有限元方法:稳定性和准确性

获取原文

摘要

The Strong Formulation Finite Element Method (SFEM) is a numerical solution technique forsolving arbitrarily shaped structural systems. This method uses a hybrid scheme given by the DifferentialQuadrature Method (DQM) and the Finite Element Method (FEM). The SFEM takes the best from DQM andFEM giving a highly accurate strong formulation based technique with the adaptability of finite elements. Thepresent study investigates the stability and accuracy of SFEM when applied to 1D and 2D structuralcomponents, such as rods, beams, membranes and plates using analytical and semi-analytical well-knownsolutions. The numerical results show that the present approach can be very accurate using a small number ofgrid points and elements, when it is compared to standard FEM.
机译:强公式化有限元方法(SFEM)是一种用于求解任意形状的结构系统的数值求解技术。该方法使用由差分正交方法(DQM)和有限元方法(FEM)给出的混合方案。 SFEM充分利用了DQM和FEM的优势,提供了基于有限元素的高度精确,基于公式化的技术。本研究使用分析和半解析的众所周知的方法研究了SFEM在应用于1D和2D结构部件(例如杆,梁,膜和板)时的稳定性和准确性。数值结果表明,与标准FEM相比,使用少量网格点和元素可以使本方法非常准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号