首页> 外文期刊>Frontiers in Plant Science >Commentary: Primary Transcripts of microRNAs Encode Regulatory Peptides
【24h】

Commentary: Primary Transcripts of microRNAs Encode Regulatory Peptides

机译:评论:microRNA的原始转录物编码调控肽。

获取原文
           

摘要

Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were assumed to be incapable of encoding proteins (Mercer et al., 2009 ; Rogers and Chen, 2013 ; Patil et al., 2014 ). miRNAs that derived from the primary miRNAs (pri-miRNAs) play crucial roles in post-transcriptional gene regulation by either repressing translation or guiding the degradation of complementary mRNA targets (Rogers and Chen, 2013 ). Transcriptome and high-throughput sequencing analyses have revealed a large number of ncRNAs in various organisms (Kapusta and Feschotte, 2014 ). It was found that ncRNAs were implicated in a variety of biological processes, including plant growth and development, and responses to environmental stresses (Mercer et al., 2009 ; Zhang et al., 2013 ; Kapusta and Feschotte, 2014 ).Increasing evidence from both plants and animals has revealed that previously annotated lncRNAs have the capacity to encode small peptides (Ruiz-Orera et al., 2014 ; Lauressergues et al., 2015 ). In mammals, myoregulin (MLN), a lncRNA-encoded micropeptide, was reported to function in controlling muscle performance (Anderson et al., 2015 ). More specifically, MLN finely regulated calcium (Ca~(2+)) uptake through physical interaction with sarcoplasmic reticulum Ca~(2+)ATPase (SERCA). The removal of MLN in mice resulted in enhanced Ca~(2+)handling and improved exercise performance (Anderson et al., 2015 ). A second lncRNA-encoded peptide, termed dwarf open reading frame (DWORF), has been shown to enhance SERCA activity and Ca~(2+)load by displacing the SERCA inhibitors and mitigating their inhibitory activity (Nelson et al., 2016 ). Meanwhile, in plants ~30,000 ncRNAs have been identified with over 1700 transcripts designated as ncRNAs in Arabidopsis alone (Liu et al., 2015 ). The functionally characterized plant lncRNA-encoded peptides comprise ENOD40 ( Early nodulin 40 ) that is required for plant-bacteria symbiotic interaction, IPS1 ( Induced by phosphate starvation1 ) that is implicated in phosphate uptake, LDMAR ( Long-day-specific male-fertility-associated RNA ) that controls photoperiod-sensitive male sterility, and COOLAIR and COLDAIR that influence Arabidopsis flowering time by affecting FLC transcription (Zhang et al., 2013 ).Pri-miRNAs have been recently reported to harbor short open reading frames (ORFs) that encode regulatory peptides, termed miRNA-encoded peptides (miPEPs), indicating that pri-miRNAs possess both protein-coding and non-coding roles (Lauressergues et al., 2015 ). The native expression of miPEPs could be detected using specific antibodies, and their expression patterns are the same as those of their corresponding miRNAs. Overexpression or exogenous application of two miPEPs, miPEP171b from Medicago truncatula and miPEP165a from Arabidopsis, enhanced the expression of their corresponding miRNAs, thereby potentiating the suppression of target genes involved in root development (Lauressergues et al., 2015 ). Collectively, this study revealed that miPEPs are functional peptides that could promote the accumulation of their associated pri-miRNAs and ultimately down-regulate target genes.The identification of miPEPs is in line with increasing evidence that a large number of micropeptides were found to be encoded by previously unannotated short ORFs in lncRNAs (Ruiz-Orera et al., 2014 ; Lauressergues et al., 2015 ). An immediate question in future is to determine whether miPEPs exist in other organisms, and if so, how many of these miPEPs have a biological function? This further raises another question that with what approaches to detect and validate potential miPEPs. The existence of endogenous miPEPs have been experimentally demonstrated using immunoblot, GUS reporter analysis and overexpression studies for miPEP171b and miPEP165a (Lauressergues et al., 2015 ). The translation of pri-miR171b and pri-miR165a were also supported by ribosome profiling (Juntawong et al., 2014 ) although miPEP171b and miPEP165a have not been detected by mass spectrometry (Baerenfaller et al., 2008 ; Castellana et al., 2008 ). The identification of miPEPs by using computational prediction alone is challenging (Waterhouse and Hellens, 2015 ). As have been shown for the discovery of small ORFs (smORF)-encoded peptides (Saghatelian and Couso, 2015 ), a combination of approaches including high-throughput RNA sequencing (RNA-seq), ribosome profiling, proteomics and bioinformatic is also required for identification of putative miPEPs (Aspden et al., 2014 ; Juntawong et al., 2014 ; Prabakaran et al., 2014 ).A survey of fifty Arabidopsis pri-miRNAs revealed the presence of at least one putative smORF encoding a peptide in each sequence (Lauressergues et al., 2015 ). Further investigation of these putative miPEPs revealed that they did not share a common signature, suggesting that the regulatory activity of each putative miPEP is likely specific for their associated miRNA as have been experimentally shown for sever
机译:假定包括微RNA(miRNA)和长非编码RNA(lncRNA)在内的非编码RNA(ncRNA)无法编码蛋白质(Mercer等,2009; Rogers and Chen,2013; Patil等,2014)。源自初级miRNA(pri-miRNA)的miRNA通过抑制翻译或指导互补mRNA靶标的降解在转录后基因调控中发挥关键作用(Rogers and Chen,2013)。转录组和高通量测序分析已经揭示了各种生物中的大量ncRNA(Kapusta和Feschotte,2014年)。发现ncRNA与多种生物学过程有关,包括植物的生长和发育以及对环境胁迫的响应(Mercer等人,2009年; Zhang等人,2013年; Kapusta和Feschotte,2014年)。无论是动植物,都揭示了先前注释的lncRNA具有编码小肽的能力(Ruiz-Orera等,2014; Lauresergues等,2015)。据报道,在哺乳动物中,肌球蛋白(MLN)是一种lncRNA编码的微肽,在控制肌肉表现中起作用(Anderson等人,2015)。更具体地说,MLN通过与肌质网Ca〜(2+)ATPase(SERCA)的物理相互作用来精细调节钙(Ca〜(2+))的摄取。小鼠中MLN的去除可增强Ca〜(2+)的处理能力,并改善运动表现(Anderson等,2015)。已经显示了第二个lncRNA编码的肽,称为矮开放阅读框(DWORF),可通过取代SERCA抑制剂并减轻其抑制活性来增强SERCA活性和Ca〜(2+)负载(Nelson等,2016)。同时,仅在拟南芥中,已在植物中鉴定出约30,000个ncRNA,其中有1700多个转录本被称为ncRNA(Liu等人,2015)。具有功能特征的植物lncRNA编码肽包含植物与细菌共生相互作用所需的ENOD40(早期结节蛋白40),与磷酸盐吸收有关的IPS1(由磷酸盐饥饿1诱导),LDMAR(长日特异性雄性育性-控制光周期敏感的雄性不育的相关RNA),以及通过影响FLC转录影响拟南芥开花时间的COOLAIR和COLDAIR(Zhang et al。,2013).Pri-miRNA最近被报道带有短开放阅读框(ORF)编码调节肽,称为miRNA编码肽(miPEP),表明pri-miRNA同时具有蛋白质编码和非编码作用(Lauressergues et al。,2015)。可以使用特异性抗体检测miPEP的天然表达,并且它们的表达模式与其相应的miRNA相同。过表达或外源应用两种miPEP,即来自Medicago truncatula的miPEP171b和来自拟南芥的miPEP165a,增强了其相应miRNA的表达,从而增强了对参与根发育的靶基因的抑制(Lauressergues等,2015)。总的来说,这项研究表明miPEP是功能性肽,可以促进其相关pri-miRNA的积累并最终下调靶基因.miPEP的鉴定与越来越多的证据表明发现大量的微肽被编码有关通过先前未注释的lncRNA中的短ORF进行分析(Ruiz-Orera等,2014; Lauressergues等,2015)。将来的一个紧迫问题是要确定其他生物中是否存在miPEP,如果存在,那么这些miPEP中有多少具有生物学功能?这进一步提出了另一个问题,即采用什么方法来检测和验证潜在的miPEP。内源性miPEP的存在已通过免疫印迹,GUS记者分析和针对miPEP171b和miPEP165a的过表达研究进行了实验证明(Lauressergues等人,2015年)。核糖体分析也支持pri-miR171b和pri-miR165a的翻译(Juntawong等,2014),尽管质谱未检测到miPEP171b和miPEP165a(Baerenfaller等,2008; Castellana等,2008)。 。仅使用计算预测来识别miPEP是具有挑战性的(Waterhouse和Hellens,2015年)。正如发现小的ORF(smORF)编码肽所显示的那样(Saghatelian和Couso,2015年),对于高通量RNA测序(RNA-seq),核糖体谱,蛋白质组学和生物信息学等方法的结合也需要推定的miPEP的鉴定(Aspden等人,2014年; Juntawong等人,2014年; Prabakaran等人,2014年)。对五十个拟南芥pri-miRNA进行的调查显示,每个序列中至少存在一种编码肽的推定smORF。 (Lauressergues et al。,2015)。对这些推定的miPEP的进一步研究表明,它们不具有共同的特征,这表明每个推定的miPEP的调节活性可能是针对其相关miRNA的特异性的,如实验证明的那样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号