首页> 外文期刊>Frontiers in Physiology >“Oxygen Sensing” by Na,K-ATPase: These Miraculous Thiols
【24h】

“Oxygen Sensing” by Na,K-ATPase: These Miraculous Thiols

机译:Na,K-ATPase的“氧感测”:这些神奇的硫醇

获取原文
           

摘要

Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O_(2)binding sites its “oxygen-sensitivity” is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation, and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H_(2)O_(2), NO, and oxidized glutathione are the signaling messengers that make the Na,K-ATPase “oxygen-sensitive.” This very ancient signaling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the “optimal” level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterize the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summary on (i) the sources of free radical production in hypoxic cells, (ii) localization of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzyme to a variety of stimuli (hypoxia, receptors' activation) (iii) redox-sensitive regulatory phosphorylation, and (iv) the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate. Better understanding of the processes underlying successful adaptation strategies will make it possible to harness them and use for treatment of patients with stroke and myocardial infarction, sleep apnoea and high altitude pulmonary oedema, and those undergoing surgical interventions associated with the interruption of blood perfusion.
机译:Na,K-ATPase功能的控制在有机体适应缺氧和缺氧条件中起着核心作用。由于该酶本身不具有O_(2)结合位点,因此它的“氧敏感性”是通过多种氧化还原敏感的修饰介导的,包括S-谷胱甘肽化,S-亚硝基化和氧化还原敏感的磷酸化。这是对许多将ATP消耗性Na,K-ATPase的活性调节为细胞代谢活性的分子机制的最新知识的概述。最近的发现表明,氧自由基,H_(2)O_(2),NO和氧化型谷胱甘肽是使Na,K-ATPase对氧敏感的信号传递剂。这种非常古老的信号通路靶向Na,K-ATPase的所有三个亚基的巯基以及氧化还原敏感的激酶,将酶的活性维持在“最佳”水平,避免了末端ATP的消耗并维持了缺氧细胞中跨膜离子梯度。耐受物种。我们认识到基本过程的复杂性,因为我们表征了缺氧细胞中活性氧和氮物质产生的来源,并确定了它们的靶标,即经过修饰会影响酶活性的活性硫醇基团。因此,本综述的结构结构如下:(i)低氧细胞中自由基产生的来源,(ii)Na,K-ATPase中调节性巯基的定位以及可逆巯基修饰在酶对甲氧磷反应中的作用各种刺激(缺氧,受体激活)(iii)氧化还原敏感的调节磷酸化,以及(iv)Na,K-ATPase功能的精细调节在低氧条件下存活成功的作用。两位合著者试图涵盖该领域中的所有矛盾和基本假设,并提出这一动态研究领域可能的未来发展,其重要性难以高估。更好地了解成功的适应策略的基础过程将使它们有可能被利用,并用于治疗中风和心肌梗塞,睡眠呼吸暂停和高海拔肺水肿的患者,以及接受与血液灌注中断有关的外科手术的患者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号