首页> 外文期刊>Frontiers in Immunology >Editorial: Bacterial Exotoxins: How Bacteria Fight the Immune System
【24h】

Editorial: Bacterial Exotoxins: How Bacteria Fight the Immune System

机译:社论:细菌外毒素:细菌如何抵抗免疫系统

获取原文
           

摘要

The Editorial on the Research Topic Bacterial Exotoxins: How Bacteria Fight the Immune System Upon infection with a bacterial pathogen, the body initiates both innate and adaptive immune responses with the ultimate goal to eliminate the invader and to return to homeostasis. Occasionally, however, the body may react inadequately, resulting in collateral damage to tissues if the response it too strong or in a failure to eradicate the pathogen if the response is too weak or ephemeral. Functionally diverse toxins released by bacteria during infection can contribute considerably to the outcomes of the immune response. For example, bacterial toxins may mediate bacterial evasion of immune recognition, facilitate dwelling within protected niches of eukaryotic cells, or modulate pro-inflammatory responses. Furthermore, in recent years, it has become evident that beyond their canonical actions, bacterial toxins may initiate other cellular responses. For example, besides inducing cytolysis, pore-forming toxins may also induce autophagy, pyroptosis, or activation of the MAPK pathways, resulting in adjustment of the host immune response to infection and modification of inflammatory responses both locally and systemically ( 1 , 2 ). Exotoxins can be single polypeptides or heteromeric protein complexes that act on different parts of the cells. At the cell surface, they may insert into the membrane to cause damage, bind to receptors to initiate their uptake, or facilitate interactions with other cell types. For intracellular activity, exotoxins need to be translocated across the eukaryotic membrane. Gram-negative bacteria can directly inject effector proteins in a receptor-independent manner by use of specialized needle apparatus such as bacterial type II, type III, or type IV secretion systems. Other methods of translocation include the phagocytic uptake of bacteria followed by toxin secretion and receptor-mediated endocytosis. Receptor-based uptake allows the targeting of distinct cell types uniquely expressing the receptor. It is initiated by the binding of heteromeric toxin complexes to cell surfaces and is completed by the translocation of the effector proteins across the endosomal membrane. Once in the cytosol, toxins interact with specific eukaryotic target proteins to cause post-translational modifications of host proteins that often result in the manipulation of cellular signaling cascades and inflammatory responses ( 3 ). The intention of this special issue on bacterial exotoxins is to gather current knowledge on the interaction of these versatile effector proteins with the host immune system and to describe mechanisms of immune modification and evasion. We thank the authors of the following 16 articles for providing diverse overviews, comprehensive reviews, and intriguing new data regarding the effects on, and interactions with, three important groups of immune function: (1) barrier cells such as fibroblasts, and epithelial and endothelial cells that are responsible for mediating local immune responses, (2) innate phagocytic cells, and (3) cells of the adaptive arm of immunity. The first group of manuscripts addresses the interaction of bacterial toxins of both Gram-positive and Gram-negative bacteria with initial barrier cells. Mayer et al. explore the effects of Shiga Toxin (Stx) expressed by enterohemorrhagic E. coli on renal endothelial and epithelial cells. In the kidneys, Stx causes hemolytic uremic syndrome, which can result in renal failure. The authors found that Stx-induced damage of renal cells stimulates the release of host-derived damage-associated molecular patterns (DAMPs), such as histones or high-mobility group protein B1 (HMGB1), and that these contribute to the severity of the disease. Ashida et al. review how Shigella , a pathogen of the intestinal tract that causes dysentery, uses effector proteins that are injected into host target cells via a type-III secretion system to induce cell death, to modulate protein trafficking and signaling, and to ultimately interfere with both innate and adaptive immunity. Moreover, the poultry pathogen Salmonella pullorum expresses an iron-storage protein called bacterioferritin that appears to be a major antigen for the chicken humoral response to S. pullorum infection ( Xu et al. ). Using a chicken fibroblast cell line, the authors furthermore identify the induction of the type I interferon IFN-β as a major consequence of bacterioferritin exposure. The last article on the effects of toxin on host barrier function is by von Hoven et al. who studied the pore-forming α-toxin of Staphylococcus aureus . Using mouse embryonic fibroblasts, the authors show that stress-induced basal phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) results in tolerance to the toxin. Macrophages, however, are tolerant to α-toxin independent of such a stress response, underlining the fact that various host cell types can mediate different layers of tolerance
机译:研究主题社论:细菌外毒素:细菌如何抵抗免疫系统感染细菌病原体后,人体会启动先天性和适应性免疫反应,最终目的是消除侵害者并恢复体内平衡。但是,有时如果反应太强,身体可能反应不充分,对组织造成附带损害;如果反应太弱或短暂,则可能无法清除病原体。细菌在感染过程中释放的功能多样的毒素可极大地促进免疫反应的结果。例如,细菌毒素可以介导细菌逃避免疫识别,促进驻留在真核细胞受保护的壁ches中,或调节促炎反应。此外,近年来,很明显,细菌毒素除了其典型作用外,还可能引发其他细胞反应。例如,除了诱导细胞溶解之外,成孔毒素还可以诱导自噬,焦磷酸化或MAPK途径的激活,从而导致宿主对感染的免疫反应的调节和局部和全身炎症反应的改变(1、2)。外毒素可以是作用于细胞不同部分的单个多肽或异聚蛋白复合物。在细胞表面,它们可能会插入膜中引起损害,与受体结合以启动其吸收或促进与其他细胞类型的相互作用。对于细胞内活性,外毒素需要跨真核膜转运。革兰氏阴性细菌可以通过使用专用的针头装置(例如细菌II型,III型或IV型分泌系统)以受体独立的方式直接注射效应蛋白。其他易位方法包括吞噬细菌,继之以毒素分泌和受体介导的内吞作用。基于受体的摄取可以靶向独特表达受体的不同细胞类型。它通过异源毒素复合物与细胞表面的结合而开始,并通过效应蛋白跨过内体膜的转运而完成。一旦进入胞质溶胶,毒素就会与特定的真核靶蛋白相互作用,从而引起宿主蛋白的翻译后修饰,从而常常导致操纵细胞信号级联反应和炎症反应(3)。本期关于细菌外毒素的专刊旨在收集有关这些多功能效应蛋白与宿主免疫系统相互作用的最新知识,并描述免疫修饰和逃逸的机制。我们感谢以下16篇文章的作者提供了不同的概述,全面的评论,以及有关对免疫功能的三个重要组的作用及其与之相互作用的有趣的新数据:(1)屏障细胞(例如成纤维细胞)以及上皮和内皮负责介导局部免疫反应的细胞,(2)先天吞噬细胞和(3)免疫适应性臂细胞。第一组手稿探讨了革兰氏阳性和革兰氏阴性细菌与初始屏障细胞的相互作用。 Mayer等。探索肠出血性大肠杆菌表达的志贺毒素(Stx)对肾内皮和上皮细胞的影响。在肾脏中,Stx引起溶血性尿毒症综合征,可能导致肾衰竭。作者发现,Stx诱导的肾细胞损伤刺激了宿主衍生的损伤相关分子模式(DAMPs)的释放,例如组蛋白或高迁移率基团蛋白B1(HMGB1),这些因素导致了肾脏的严重程度疾病。芦田等。综述导致痢疾的肠道致病菌志贺氏菌如何利用通过III型分泌系统注入宿主靶细胞的效应蛋白来诱导细胞死亡,调节蛋白运输和信号传导并最终干扰先天性和适应性免疫。此外,家禽病原体沙门氏菌表达一种称为细菌铁蛋白的铁存储蛋白,似乎是鸡对鸡白痢链球菌感染的体液反应的主要抗原(Xu等人)。利用鸡成纤维细胞系,作者进一步确定了I型干扰素IFN-β的诱导是细菌铁蛋白暴露的主要结果。关于毒素对宿主屏障功能的影响的最后一篇文章由von Hoven等人撰写。他研究了金黄色葡萄球菌的成孔性α毒素。作者使用小鼠胚胎成纤维细胞显示,应激诱导的真核翻译起始因子2α(eIF2α)的基础磷酸化导致对毒素的耐受。然而,巨噬细胞对α-毒素的耐受性与这种应激反应无关,这突显了以下事实:各种宿主细胞类型均可介导不同的耐受层

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号