...
首页> 外文期刊>Frontiers in Physiology >Humans Vary, So Cardiac Models Should Account for That Too!
【24h】

Humans Vary, So Cardiac Models Should Account for That Too!

机译:人类因人而异,因此心脏模型也应说明这一点!

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The utilization of mathematical modeling and simulation in drug development encompasses multiple mathematical techniques and the location of a drug candidate in the development pipeline. Historically speaking they have been used to analyze experimental data (i.e., Hill equation) and clarify the involved physical and chemical processes (i.e., Fick laws and drug molecule diffusion). In recent years the advanced utilization of mathematical modeling has been an important part of the regulatory review process. Physiologically based pharmacokinetic (PBPK) models identify the need to conduct specific clinical studies, suggest specific study designs and propose appropriate labeling language. Their application allows the evaluation of the influence of intrinsic (e.g., age, gender, genetics, disease) and extrinsic [e.g., dosing schedule, drug-drug interactions (DDIs)] factors, alone or in combinations, on drug exposure and therefore provides accurate population assessment. A similar pathway has been taken for the assessment of drug safety with cardiac safety being one the most advanced examples. Mechanistic mathematical model-informed safety evaluation, with a focus on drug potential for causing arrhythmias, is now discussed as an element of the Comprehensive in vitro Proarrhythmia Assay. One of the pillars of this paradigm is the use of an in silico model of the adult human ventricular cardiomyocyte to integrate in vitro measured data. Existing examples (in vitro—in vivo extrapolation with the use of PBPK models) suggest that deterministic, epidemiological and clinical data based variability models can be merged with the mechanistic models describing human physiology. There are other methods available, based on the stochastic approach and on population of models generated by randomly assigning specific parameter values (ionic current conductance and kinetic) and further pruning. Both approaches are briefly characterized in this manuscript, in parallel with the drug-specific variability.
机译:在药物开发中使用数学建模和模拟包括多种数学技术以及候选药物在开发流程中的位置。从历史上讲,它们已用于分析实验数据(即希尔方程)并阐明涉及的物理和化学过程(即菲克定律和药物分子扩散)。近年来,数学建模的先进利用已成为监管审查过程的重要组成部分。基于生理学的药代动力学(PBPK)模型确定了进行特定临床研究,建议特定研究设计并提出适当标签语言的需求。它们的应用可以评估内在因素(例如年龄,性别,遗传学,疾病)和外在因素(例如给药方案,药物相互作用)对药物暴露的影响,因此可以提供准确的人口评估。已经采用了类似的途径来评估药物安全性,其中心脏安全性是最先进的例子之一。现在,以机制数学模型为依据的安全性评估(重点在于引起心律不齐的药物潜力)已作为综合体外心律失常分析的一部分进行了讨论。该范例的支柱之一是使用成年人类心室心肌细胞的计算机模型来整合体外测量数据。现有示例(使用PBPK模型进行体外-体内外推)表明,可以将基于确定性,流行病学和临床数据的变异性模型与描述人类生理的机械模型合并。根据随机方法以及通过随机分配特定参数值(离子电导率和动力学)并进一步修剪而生成的模型总数,还有其他可用的方法。两种方法均在本手稿中进行了简要描述,同时具有药物特异性变异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号