首页> 外文期刊>Frontiers in Molecular Biosciences >Using small-angle scattering data and parametric machine learning to optimize forcefield parameters for intrinsically disordered proteins
【24h】

Using small-angle scattering data and parametric machine learning to optimize forcefield parameters for intrinsically disordered proteins

机译:使用小角度散射数据和参数机器学习来优化内在无序蛋白的力场参数

获取原文
获取外文期刊封面目录资料

摘要

Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) play important roles in many aspects of normal cell physiology, such as signal transduction and transcription, as well as pathological states, including Alzheimer’s, Parkinson’s, and Huntington’s disease. Unlike their globular counterparts that are defined by a few structures and free energy minima, IDP/IDR comprise a large ensemble of rapidly interconverting structures and a corresponding free energy landscape characterized by multiple minima. This aspect has precluded the use of structural biological techniques such as X-ray crystallography and nuclear magnetic resonance (NMR) for resolving their structures. Instead, low-resolution techniques such as small-angle X-ray or neutron scattering (SAXS/SANS) have become a mainstay in characterizing coarse features of the ensemble of structures. These are typically complemented with NMR data if possible or computational techniques such as atomistic molecular dynamics to further resolve the underlying ensemble of structures. However, over the past 10-15 years, it has become evident that the classical, pairwise-additive force fields that have enjoyed a high degree of success for globular proteins have been somewhat limited in modeling IDP/IDR structures that agree with experiment. There has thus been a significant effort to rehabilitate these models to obtain better agreement with experiment, typically done by optimizing parameters in a piecewise fashion. In this work, we take a different approach by optimizing a set of force field parameters simultaneously, using machine learning to adapt force field parameters to experimental SAXS scattering profiles. We demonstrate our approach in modeling three biologically IDP ensembles based on experimental SAXS profiles and show that our optimization approach significantly improve force field parameters that generate ensembles in better agreement with experiment.
机译:内在无序蛋白(IDP)和内在无序区(IDRs)的蛋白在正常细胞生理的许多方面都起着重要作用,例如信号转导和转录以及病理状态,包括阿尔茨海默氏症,帕金森氏症和亨廷顿氏病。 IDP / IDR与它们的球状对应物由少量结构和自由能最小值定义的不同,它包含大量快速互变结构和以多个最小值为特征的相应自由能态。该方面已经排除了使用结构生物学技术例如X射线晶体学和核磁共振(NMR)来解析它们的结构。取而代之的是,诸如小角度X射线或中子散射(SAXS / SANS)之类的低分辨率技术已成为表征结构整体特征的主要手段。如果可能的话,这些通常会辅以NMR数据或诸如原子分子动力学之类的计算技术来进一步解决基础结构的整体问题。然而,在过去的10到15年中,很明显,在模拟与实验相符的IDP / IDR结构方面,已经获得了球蛋白高度成功的经典,成对加性力场。因此,人们进行了大量的工作来修复这些模型,以更好地与实验相吻合,这通常是通过分段优化参数来完成的。在这项工作中,我们采用机器学习使力场参数适应实验性SAXS散射轮廓的方法,同时优化一组力场参数,采用了不同的方法。我们演示了基于实验SAXS轮廓对三个生物IDP集成体进行建模的方法,并表明我们的优化方法显着改善了生成集成体的力场参数,使其与实验更好地吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号