...
首页> 外文期刊>Frontiers in Microbiology >Editorial: The Responses of Marine Microorganisms, Communities and Ecofunctions to Environmental Gradients
【24h】

Editorial: The Responses of Marine Microorganisms, Communities and Ecofunctions to Environmental Gradients

机译:社论:海洋微生物,社区和生态功能对环境梯度的反应

获取原文
   

获取外文期刊封面封底 >>

       

摘要

From estuaries to marginal seas and open oceans, from tropical warm pools to subtropical gyres and polar cryospheres, from sunlit surface water to twilight zone and pitch-black abyssopelagic water, from water columns to sediments and deep subseafloor biospheres, marine ecosystems experience diverse environmental gradients (Karl, 2007 ; Dang and Jiao, 2014 ). In addition to these large-scale gradients, small-scale, and micro-scale gradients of various physicochemical factors are common in the ocean; in particular, in marginal seas and coastal environments (Kappler et al., 2005 ; Stocker, 2012 ). The diverse gradients of physicochemical parameters, nutrients, and chemicals serving as electron donors and acceptors contribute to the creation of habitat heterogeneity and novel locales along a gradient may create unique niches for any given microorganism. Whether at the surface of a marine snow particle or alga, at the edges of an oxygen minimum zone (OMZ), in marginal sea methane-seep sediments, or on a chimney wall of a deep-sea hydrothermal vent, these interfaces provide hotspot habitats with sharp physicochemical gradients that may host diverse yet unknown microorganisms that facilitate yet unknown biogeochemical processes (Hügler and Sievert, 2011 ; Wright et al., 2012 ; Dang and Lovell, 2016 ). With the progress of marine molecular microbial ecology and “omics” techniques, certain environmental keystone microorganisms have been discovered at some of these interfaces: such as the anaerobic methane-oxidizing (ANME) archaea in methane-rich sediments (Valentine and Reeburgh, 2000 ), cable bacteria that facilitate electrogenic sedimentary sulfide oxidation (Nielsen and Risgaard-Petersen, 2015 ), neutrophilic zetaproteobacterial iron-oxidizing bacteria (FeOB) in deep-sea hydrothermal microbial mats and at abyssal basaltic glass-seawater and coastal metal-seawater interfaces (Emerson et al., 2010 ; Dang et al., 2011 ; Henri et al., 2016 ), anaerobic ammonium-oxidizing (anammox) bacteria and SUP05 sulfur-oxidizing bacteria (SOXB) in coastal and oceanic OMZs (Dick et al., 2013 ; Oshiki et al., 2016 ), and sulfur-oxidizing and/or hydrogen-oxidizing Campylobacteria in the proposed new phylum Campylobacterota (formerly known as Epsilonproteobacteria ; Waite et al., 2018 ) at seawater, hydrothermal vent, and subseafloor redox interfaces (Campbell et al., 2006 ; Grote et al., 2012 ; Dick et al., 2013 ; Han and Perner, 2015 ; McNichol et al., 2018 ). Even the ubiquitous marine ammonia-oxidizing Thaumarchaeota , discovered only a decade ago (K?nneke et al., 2005 ), can now be divided into two distinct ecological groups according to the vertical physicochemical profile of marine water, the “shallow clade” and the “deep clade” (Hatzenpichler, 2012 ). The ongoing discovery of unique ecophysiological functions of marine Bacteria and Archaea will contribute to a conceptual rewriting of biogeochemical pathways in the marine C, N, S, and Fe cycles. The characterization of how the abundance and spatial distribution of marine microorganisms, the structure of microbial communities and their provided ecosystem functions respond to the diverse environmental gradients is of fundamental importance to our understanding of the microbial ecology and biogeochemistry of the oceans. This rationale defines the aim and scope of this Research Topic. The contributions of environmental gradients to the diversity of marine microorganisms and their metabolic potentials may play important roles in maintaining the stability and functions of the estuarine, coastal and marginal sea ecosystems, which have been experiencing a multitude of anthropogenic perturbations (Dang and Jiao, 2014 ; Damashek and Francis, 2018 ). The responses of the affected microbial communities to human-induced environmental impacts are currently still difficult to predict and the understanding of microbial processes and mechanisms at the community level is the key for predictive modeling, which also requires the collection of large empirical data sets (Haruta et al., 2013 ; Hanemaaijer et al., 2015 ; Burd et al., 2016 ). Greater understanding of microbial responses to natural and anthropogenic environmental gradients may also help us understand the responses of marine ecosystems to global climate change and other large-scale environmental perturbations such as ocean acidification and spatial and temporal ocean deoxygenation. The authors of this Research Topic contributed a total of 21 publications covering a wide variety of subjects spanning from microbial metabolic dynamics to biogeochemical cycling of C, N, S, and Fe in micro-, small-, and geographic-scale marine gradients. This Editorial aims to highlight some of the main findings reported in these publications and we would like to take this opportunity to thank all participating editors and reviewers for making this Research Topic a success. In order to cover the broad subjects of the articles published in this Research Topi
机译:从河口到边缘海洋和大洋,从热带暖池到亚热带回旋区和极地冰冻圈,从阳光照射的地表水到暮光区和深黑的深海古水,从水柱到沉积物和深海底生物圈,海洋生态系统经历各种环境梯度(Karl,2007; Dang and Jiao,2014)。除了这些大尺度梯度外,海洋中还存在各种物理化学因素的小尺度和微观尺度梯度。特别是在边缘海域和沿海环境中(Kappler等,2005; Stocker,2012)。物理化学参数,营养素和用作电子供体和受体的化学物质的不同梯度有助于创造栖息地的异质性,并且沿该梯度的新颖场所可能会为任何给定微生物创造独特的生态位。无论是在海洋雪粒或藻类表面,最低限氧区(OMZ)的边缘,在边缘深处有甲烷的深部沉积物中,还是在深海热液喷口的烟囱壁上,这些界面都可以提供热点栖息地具有陡峭的理化梯度,可能蕴藏着多种多样但未知的微生物,促进了未知的生物地球化学过程(Hügler和Sievert,2011; Wright等人,2012; Dang和Lovell,2016)。随着海洋分子微生物生态学和“组学”技术的发展,已经在这些界面中的某些界面发现了某些环境基石微生物:例如富含甲烷的沉积物中的厌氧甲烷氧化(ANME)古细菌(Valentine和Reeburgh,2000年)。 ,促进电沉积硫化物氧化的电缆细菌(Nielsen和Risgaard-Petersen,2015年),深海热液微生物垫中以及深海的玄武质玻璃-海水和沿海金属-海水界面(Emerson)中的中性zetaproteobacterial铁氧化细菌(FeOB)等人,2010; Dang等人,2011; Henri等人,2016),沿海和海洋OMZ中的厌氧铵氧化(anammox)细菌和SUP05硫氧化细菌(SOXB)(Dick等人,2013) ; Oshiki et al。,2016),以及拟议的新门弯曲杆菌中的硫氧化和/或氢氧化弯曲杆菌(以前称为Epsilon变形杆菌; Waite等,2018)低温通风口和海底氧化还原界面(Campbell et al。,2006; Grote等,2012; Dick等,2013; Han和Perner,2015年; McNichol et al。,2018)。即使是十年前才发现的普遍存在的海洋氨氧化Thaumarchaeota(K?nneke等人,2005年),现在也可以根据海水的垂直理化特征将其分为两个不同的生态组,即“浅枝”和“浅枝”。 “深部进化论”(Hatzenpichler,2012年)。海洋细菌和古细菌独特的生态生理功能的不断发现将有助于概念性重写海洋C,N,S和Fe循环中的生物地球化学途径。海洋微生物的丰度和空间分布,微生物群落的结构及其提供的生态系统功能如何响应各种环境梯度的特征,对于我们了解海洋的微生物生态学和生物地球化学至关重要。该基本原理定义了本研究主题的目的和范围。环境梯度对海洋微生物多样性及其代谢潜能的贡献可能在维持河口,沿海和边缘海生态系统的稳定性和功能方面发挥着重要作用,而河口,沿海和边缘海生态系统一直受到人为干扰(Dang和Jiao,2014年)。 ; Damashek和Francis,2018年)。受影响的微生物群落对人为环境影响的反应目前仍然难以预测,并且在群落水平上对微生物过程和机制的理解是预测建模的关键,这也需要收集大量的经验数据集(Haruta等人,2013; Hanaemaijer等人,2015; Burd等人,2016)。对微生物对自然和人为环境梯度的反应的更多了解也可能有助于我们理解海洋生态系统对全球气候变化和其他大规模环境扰动的反应,例如海洋酸化和海洋时空脱氧。该研究主题的作者贡献了21篇出版物,涉及从微生物代谢动力学到C,N,S和Fe在微尺度,小尺度和地理尺度的海洋梯度中的生物地球化学循环的各种主题。本社论旨在重点介绍这些出版物中报告的一些主要发现,我们想借此机会感谢所有参与的编辑和审稿人使本研究课题取得成功。为了涵盖本研究Topi发表的文章的广泛主题

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号