首页> 外文期刊>Frontiers in Computational Neuroscience >Causal Role of Thalamic Interneurons in Brain State Transitions: A Study Using a Neural Mass Model Implementing Synaptic Kinetics
【24h】

Causal Role of Thalamic Interneurons in Brain State Transitions: A Study Using a Neural Mass Model Implementing Synaptic Kinetics

机译:丘脑中间神经元在脑状态转换中的因果作用:使用神经质量模型实施突触动力学的研究。

获取原文
           

摘要

Experimental studies on the Lateral Geniculate Nucleus (LGN) of mammals and rodents show that the inhibitory interneurons (IN) receive around 47.1% of their afferents from the retinal spiking neurons, and constitute around 20–25% of the LGN cell population. However, there is a definite gap in knowledge about the role and impact of IN on thalamocortical dynamics in both experimental and model-based research. We use a neural mass computational model of the LGN with three neural populations viz. IN, thalamocortical relay (TCR), thalamic reticular nucleus (TRN), to study the causality of IN on LGN oscillations and state-transitions. The synaptic information transmission in the model is implemented with kinetic modeling, facilitating the linking of low-level cellular attributes with high-level population dynamics. The model is parameterized and tuned to simulate alpha (8–13 Hz) rhythm that is dominant in both Local Field Potential (LFP) of LGN and electroencephalogram (EEG) of visual cortex in an awake resting state with eyes closed. The results show that: First, the response of the TRN is suppressed in the presence of IN in the circuit; disconnecting the IN from the circuit effects a dramatic change in the model output, displaying high amplitude synchronous oscillations within the alpha band in both TCR and TRN. These observations conform to experimental reports implicating the IN as the primary inhibitory modulator of LGN dynamics in a cognitive state, and that reduced cognition is achieved by suppressing the TRN response. Second, the model validates steady state visually evoked potential response in humans corresponding to periodic input stimuli; however, when the IN is disconnected from the circuit, the output power spectra do not reflect the input frequency. This agrees with experimental reports underpinning the role of IN in efficient retino-geniculate information transmission. Third, a smooth transition from alpha to theta band is observed by progressive decrease of neurotransmitter concentrations in the synaptic clefts; however, the transition is abrupt with removal of the IN circuitry in the model. The results imply a role of IN toward maintaining homeostasis in the LGN by suppressing any instability that may arise due to anomalous synaptic attributes.
机译:对哺乳动物和啮齿动物的侧向细核(LGN)进行的实验研究表明,抑制性中间神经元(IN)从视网膜突状神经元接收到约47.1%的传入神经,约占LGN细胞总数的20-25%。然而,在实验研究和基于模型的研究中,关于IN对丘脑动力学的作用和影响的知识尚存在一定差距。我们使用具有三个神经群体的LGN的神经质量计算模型。 IN是丘脑皮质中继(TCR),丘脑网状核(TRN),以研究IN对LGN振荡和状态转变的因果关系。该模型中的突触信息传递是通过动力学建模实现的,从而有助于将低级细胞属性与高水平种群动态联系起来。对模型进行参数化和调整,以模拟处于清醒静止状态(闭眼)的LGN的局部场电位(LFP)和视觉皮层的脑电图(EEG)都占主导地位的alpha(8-13 Hz)节律。结果表明:首先,电路中存在IN时,TRN的响应受到抑制;将IN与电路断开连接会在模型输出中产生巨大变化,从而在TCR和TRN的alpha频带内显示出高幅度同步振荡。这些观察结果符合实验报告,暗示IN是认知状态下LGN动态的主要抑制性调节剂,并且通过抑制TRN响应来降低认知。其次,该模型验证了对应于周期性输入刺激的人体稳态视觉诱发电位响应;但是,当IN与电路断开时,输出功率谱不会反映输入频率。这与实验报告相吻合,这些实验报告支持了IN在有效的视视网膜基因信息传递中的作用。第三,通过逐渐降低突触间隙中神经递质的浓度,可以观察到从α带到θ带的平滑过渡。但是,由于模型中的IN电路被移除,过渡过程突然发生。该结果暗示了IN通过抑制异常突触属性可能引起的任何不稳定性来维持LGN中的稳态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号