...
首页> 外文期刊>Frontiers in Cellular Neuroscience >Biotic/Abiotic Stress-Driven Alzheimer's Disease
【24h】

Biotic/Abiotic Stress-Driven Alzheimer's Disease

机译:生物/非生物应激驱动的阿尔茨海默氏病

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Introduction Alzheimer's disease (AD), a neurodegenerative condition, is characterized by deficient synaptic plasticity, dramatic neuronal dysfunction, and massive neuronal loss. Apart from familial or early-onset AD (5–10%), most AD cases are non-familial or late-onset/sporadic (90–95%; Ballard et al., 2011 ) with a complicated etiology. Some competing theories have been suggested regarding the cause of AD, such as the amyloid hypothesis (Hardy and Allsop, 1991 ) and tau hypothesis (Mudher and Lovestone, 2002 ), but minimal data on initial triggers are available despite intensive explorations over recent decades. We summarized the published evidence into an opinion that deciphers how the multifaceted adverse environmental factors drive the onset and development of AD. Etiological drivers can be categorized as biotic stressors and abiotic stressors, with the latter category divided into physical stressors and chemical stressors. Ultimately, biotic/abiotic stressors can be integrated into reactive oxygen species (ROS)/oxidative stressors and reactive nitrogen species (RNS)itrosative stressors that impact the transition of neurons from dysfunction to death (Barone et al., 2011a , b ; Butterfield et al., 2014 ). Our opinion on biotic/abiotic stress-triggered AD links the various stressors to the genesis and progression of AD through a neuroinflammatory signaling cascade, which initiates nuclear factor κB (NF-κB) and induces pro-inflammatory cytokines that evoke potent ROS/RNS burst for neuronal/glial killing. To trigger AD, biotic stressors convey the external biological signals via lipopolysaccharide (LPS)-toll-like receptor 4 (TLR4), LPS-receptor of advanced glycation end products (RAGE), and amyloid β peptide (Aβ)/senile plaques (SP)-RAGE interactions (Yan et al., 1996 ; Yamamoto et al., 2011 ). Alternatively, abiotic stressors transduce the external non-biological signals via AGEs-RAGE, high-mobility group protein B1 (HMGB1)-RAGE, and Aβ/SP-RAGE interactions (Mazarati et al., 2011 ; Horst et al., 2016 ). Specifically, hypothermia, as well as anesthesia and aging that induce hypothermia, can execute a neurotoxic role to kill neurons and glia via neurofibrillary tangles (NFTs) derived from hyperphosphorylated Tau (p-Tau) (Carrettiero et al., 2015 ; Figure 1 ). Figure 1 A hypothetical schematic of biotic/abiotic stress-triggered AD . Biotic stress from brain, oral, or gut infection can activate NF-κB-primed neuroinflammatory cascades, elicit ROS/RNS burst, and kill neurons and glia via LPS-TLR4/RAGE and Aβ/SP-RAGE interactions and subsequent signaling. Abiotic stress encompassing physical stress (e.g., head trauma, stroke, or irradiation) and chemical stress (e.g., metals, pesticides, solvents, or neurotoxins) can also activate NF-κB-primed neuroinflammatory cascades, elicit ROS/RNS burst, and kill neurons and glia via AGEs-RAGE, HMGB1-RAGE/TLR4, and Aβ/SP-RAGE interactions and downstream signaling. Hypothermia, anesthetics, and aging, can exert a neurotoxic effect upon exposure of neurons and glia to NFTs (the background figure was adopted from the website https://zhidao.baidu.com/daily/view?id=5979 ). Mounting evidence supports that LPS and interferon γ (IFN-γ) activate microglia to induce a pro-inflammatory neurotoxic M1 phenotype, whereas interleukin 4 (IL-4), IL-10, IL-13, and transforming growth factor β (TGF-β) activate microglia to give rise to an anti-inflammatory neuroprotective M2 phenotype (Tang and Le, 2016 ). Interestingly, we found that electric acupuncture can mimic mechanical wounding to firstly deteriorate LPS-induced AD-like brain pathogenesis, but secondly ameliorate the progressive neurodegeneration in a wounding-healing manner, suggesting a putative conversion from M1 microglia to M2 microglia (He, 2016 ). Biotic stress and AD Biotic stressors refer to any potential infectious pathogens or opportunistic infectious microbes, including Chlamydophila pneumoniae (Balin et al., 1998 ), Helicobacter pylori (Kountouras et al., 2012 ), Toxoplasma gondii (Prandota, 2014 ), human immunodeficiency virus (HIV; Borjabad and Volsky, 2012 ), and human cytomegalovirus (HCMV; Lurain et al., 2013 ). An international team recently urged that cerebral pathogenic infections by herpes simplex virus type 1 (HSV-1), C. pneumoniae , spirochetes, and fungi be considered as candidate AD initiators (Itzhaki et al., 2016 ). Similarly, extracerebral infectious pathogens were also considered as AD triggers; for example, oral pathogenic infections by the periodontal bacteria Porphyromonas gingivalis and Actinomyces naeslundii were identified as high-risk factors driving development toward AD (Noble et al., 2014 ; Singhrao et al., 2015 ). A recent study on gut microbiota dysbiosis indicated that intestinal microbiome alterations are related to the malfunctional motor phenotypes, suggesting the overgrowth of intestinal commensal microbes (i.e., opportunistic infection) acting as a neurodegenerative driver (Scheperjans
机译:简介阿尔茨海默氏病(AD)是一种神经退行性疾病,其特征是突触可塑性不足,神经元功能异常和神经元大量丧失。除了家族性或早发性AD(5-10%)之外,大多数AD病例是病因复杂的非家族性或晚发型/散发性(90-95%; Ballard等,2011)。已经提出了一些有关AD病因的竞争理论,例如淀粉样蛋白假说(Hardy和Allsop,1991年)和tau假说(Mudher和Lovestone,2002年),但是尽管近几十年来进行了深入的探索,但关于起因的数据很少。我们将公开发表的证据总结为一种观点,以解释多方面的不利环境因素如何驱动AD的发生和发展。病因驱动因素可分为生物应激源和非生物应激源,后者分为物理应激源和化学应激源。最终,生物/非生物应激源可以整合到影响神经元从功能障碍到死亡的过渡的活性氧(ROS)/氧化应激源和活性氮(RNS)/亚硝化应激源中(Barone et al。,2011a,b; Butterfield等人,2014)。我们对生物/非生物应激触发的AD的观点通过神经炎性信号级联反应将各种应激源与AD的发生和进展联系起来,该信号级联引发核因子κB(NF-κB)并诱导促炎性细胞因子,引起有效的ROS / RNS爆发用于神经元/神经胶质杀伤。为了触发AD,生物应激源通过脂多糖(LPS)-toll-like受体4(TLR4),高级糖化终产物的LPS-受体(RAGE)和淀粉样β肽(Aβ)/老年斑(SP)传递外部生物信号。 )-RAGE相互作用(Yan等,1996; Yamamoto等,2011)。或者,非生物应激源通过AGEs-RAGE,高迁移率族蛋白B1(HMGB1)-RAGE和Aβ/ SP-RAGE相互作用转导外部非生物信号(Mazarati等人,2011; Horst等人,2016) 。具体而言,体温过低以及诱发体温过低的麻醉和衰老可以通过源自高磷酸化Tau(p-Tau)的神经原纤维缠结(NFT)发挥神经毒性作用,杀死神经元和神经胶质(Carrettiero等人,2015年;图1)。 。图1生物/非生物应激触发AD的假设示意图。来自脑部,口腔或肠道感染的生物应激可以激活NF-κB引发的神经炎症级联反应,引发ROS / RNS爆发,并通过LPS-TLR4 / RAGE和Aβ/ SP-RAGE相互作用以及随后的信号传导杀死神经元和神经胶质。包括身体压力(例如头部创伤,中风或放射线)和化学压力(例如金属,农药,溶剂或神经毒素)的非生物胁迫也可以激活NF-κB引发的神经炎症级联反应,引起ROS / RNS爆发并杀死神经元和神经胶质细胞通过AGEs-RAGE,HMGB1-RAGE / TLR4和Aβ/ SP-RAGE相互作用以及下游信号传导。体温过低,麻醉药和衰老会在神经元和神经胶质细胞暴露于NFT时产生神经毒性作用(背景数据来自网站https://zhidao.baidu.com/daily/view?id=5979)。越来越多的证据支持LPS和干扰素γ(IFN-γ)激活小胶质细胞以诱导促炎性神经毒性M1表型,而白介素4(IL-4),IL-10,IL-13和转化生长因子β(TGF- β)激活小胶质细胞以产生抗炎性神经保护性M2表型(Tang and Le,2016)。有趣的是,我们发现电针可以模仿机械创伤,首先恶化LPS诱导的AD样脑发病机制,但其次以创伤愈合的方式改善进行性神经退行性变,表明从M1小胶质细胞向M2小胶质细胞的推测转化(He,2016 )。生物胁迫和AD生物胁迫是指任何潜在的传染性病原体或机会性传染性微生物,包括肺炎衣原体(Balin等,1998),幽门螺杆菌(Kountouras等,2012),弓形虫(Prandota,2014),人体免疫缺陷。病毒(HIV; Borjabad和Volsky,2012)和人巨细胞病毒(HCMV; Lurain等,2013)。一个国际研究小组最近敦促将1型单纯疱疹病毒(HSV-1),肺炎衣原体,螺旋体和真菌引起的脑病原体感染考虑为候选AD引发剂(Itzhaki et al。,2016)。同样,脑外感染性病原体也被认为是AD的诱因。例如,牙周细菌牙龈卟啉单胞菌和内生放线菌的口腔致病菌感染被认为是导致向AD发展的高风险因素(Noble等,2014; Singhrao等,2015)。肠道微生物群失调的最新研究表明,肠道微生物组的改变与运动功能表型异常有关,表明肠道共生微生物(即机会性感染)的过度生长是神经退行性驱动因素(Scheperjans)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号