首页> 外文期刊>Energies >Exploiting Laboratory and Heliophysics Plasma Synergies
【24h】

Exploiting Laboratory and Heliophysics Plasma Synergies

机译:利用实验室和日光物理等离子体协同作用

获取原文
           

摘要

Recent advances in space-based heliospheric observations, laboratory experimentation, and plasma simulation codes are creating an exciting new cross-disciplinary opportunity for understanding fast energy release and transport mechanisms in heliophysics and laboratory plasma dynamics, which had not been previously accessible. This article provides an overview of some new observational, experimental, and computational assets, and discusses current and near-term activities towards exploitation of synergies involving those assets. This overview does not claim to be comprehensive, but instead covers mainly activities closely associated with the authors’ interests and reearch. Heliospheric observations reviewed include the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) on the National Aeronautics and Space Administration (NASA) Solar Terrestrial Relations Observatory (STEREO) mission, the first instrument to provide remote sensing imagery observations with spatial continuity extending from the Sun to the Earth, and the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Japanese Hinode spacecraft that is measuring spectroscopically physical parameters of the solar atmosphere towards obtaining plasma temperatures, densities, and mass motions. The Solar Dynamics Observatory (SDO) and the upcoming Solar Orbiter with the Heliospheric Imager (SoloHI) on-board will also be discussed. Laboratory plasma experiments surveyed include the line-tied magnetic reconnection experiments at University of Wisconsin (relevant to coronal heating magnetic flux tube observations and simulations), and a dynamo facility under construction there; the Space Plasma Simulation Chamber at the Naval Research Laboratory that currently produces plasmas scalable to ionospheric and magnetospheric conditions and in the future also will be suited to study the physics of the solar corona; the Versatile Toroidal Facility at the Massachusetts Institute of Technology that provides direct experimental observation of reconnection dynamics; and the Swarthmore Spheromak Experiment, which provides well-diagnosed data on three-dimensional (3D) null-point magnetic reconnection that is also applicable to solar active regions embedded in pre-existing coronal fields. New computer capabilities highlighted include: HYPERION, a fully compressible 3D magnetohydrodynamics (MHD) code with radiation transport and thermal conduction; ORBIT-RF, a 4D Monte-Carlo code for the study of wave interactions with fast ions embedded in background MHD plasmas; the 3D implicit multi-fluid MHD spectral element code, HiFi; and, the 3D Hall MHD code VooDoo. Research synergies for these new tools are primarily in the areas of magnetic reconnection, plasma charged particle acceleration, plasma wave propagation and turbulence in a diverging magnetic field, plasma atomic processes, and magnetic dynamo behavior.
机译:基于空间的太阳系层观测,实验室实验和等离子体模拟代码的最新进展,为理解日物理学和实验室等离子体动力学中快速的能量释放和传输机制创造了令人振奋的新的跨学科机会,这是以前无法获得的。本文概述了一些新的观测,实验和计算资产,并讨论了当前和近期为利用涉及这些资产的协同作用而开展的活动。该概述并不声称是全面的,而是主要涵盖了与作者的兴趣和研究者紧密相关的活动。审查的日球观测资料包括对美国国家航空航天局(NASA)太阳陆地关系天文台(STEREO)进行的太阳地球冠冕和日球观测(SECCHI),这是第一种提供具有从太阳延伸的空间连续性的遥感影像观测结果的仪器以及日本Hinode航天器上的极紫外成像光谱仪(EIS),它正在以光谱方式测量太阳大气的物理参数,以获取等离子体温度,密度和质量运动。还将讨论太阳动力学天文台(SDO)和即将面世的带有日球成像仪(SoloHI)的太阳轨道器。所调查的实验室等离子体实验包括威斯康星大学的线系磁重联实验(与日冕加热磁通管的观测和模拟有关),以及在那里正在建造的发电机设施;海军研究实验室的太空等离子体模拟会议厅目前生产可扩展到电离层和磁层条件的等离子体,将来也将适合研究日冕的物理性质;麻省理工学院的多功能环形设备,可提供直接实验观察重新连接的动力学;以及Swarthmore Spheromak实验,该实验提供了关于3维(3D)零点磁重连的经过良好诊断的数据,该数据也适用于嵌入预先存在的日冕场的太阳活动区域。重点介绍的新计算机功能包括:HYPERION,具有辐射传输和热传导功能的完全可压缩3D磁流体动力学(MHD)代码; ORBIT-RF,4D蒙特卡洛代码,用于研究与嵌入背景MHD等离子体中的快速离子的波相互作用; 3D隐式多流体MHD频谱元素代码HiFi;还有3D大厅MHD代码VooDoo。这些新工具的研究协同作用主要集中在磁场重新连接,等离子带电粒子加速,在分散磁场中的等离子波传播和湍流,等离子原子过程以及磁发电机行为方面。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号