...
首页> 外文期刊>Physics of plasmas >Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas
【24h】

Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas

机译:磁物理,天体物理和实验室血浆中磁重连接的相图

获取原文
获取原文并翻译 | 示例

摘要

Recent progress in understanding the physics of magnetic reconnection is conveniently summarized in terms of a phase diagram which organizes the essential dynamics for a wide variety of applications in heliophysics, laboratory, and astrophysics. The two key dimensionless parameters are the Lundquist number and the macrosopic system size in units of the ion sound gyroradius. In addition to the conventional single X-line collisional and collisionless phases, multiple X-line reconnection phases arise due to the presence of the plasmoid instability either in collisional and collisionless current sheets. In particular, there exists a unique phase termed multiple X-line hybrid phase where a hierarchy of collisional islands or plasmoids is terminated by a collisionless current sheet, resulting in a rapid coupling between the macroscopic and kinetic scales and a mixture of collisional and collisionless dynamics. The new phases involving multiple X-lines and collisionless physics may be important for the emerging applications of magnetic reconnection to accelerate charged particles beyond their thermal speeds. A large number of heliophysical and astrophysical plasmas are surveyed and grouped in the phase diagram: Earth's magnetosphere, solar plasmas (chromosphere, corona, wind, and tachocline), galactic plasmas (molecular clouds, interstellar media, accretion disks and their coronae, Crab nebula, Sgr A, gamma ray bursts, and magnetars), and extragalactic plasmas (active galactic nuclei disks and their coronae, galaxy clusters, radio lobes, and extragalactic jets). Significance of laboratory experiments, including a next generation reconnection experiment, is also discussed.
机译:借助相图可以方便地总结了解磁重新连接的物理学的最新进展,该相图组织了在物理学,实验室和天体物理学中广泛应用的基本动力学。两个关键的无量纲参数是Lundquist数和以离子声回旋半径为单位的宏观系统尺寸。除了常规的单个X线碰撞阶段和无碰撞阶段之外,由于在碰撞和无碰撞电流层中存在等离子体不稳定性,因此出现了多个X线重新连接阶段。特别是,存在一个称为多X线混合相的独特相,其中碰撞岛或等离子体的层级由无碰撞电流片终止,从而导致宏观尺度和动力学尺度之间的快速耦合以及碰撞和无碰撞动力学的混合。涉及多条X线和无碰撞物理学的新阶段可能对磁性重新连接的新兴应用非常重要,该应用将使带电粒子加速超过其热速度。相图中对大量的日物理和天体物理等离子体进行了调查和归类:地球磁层,太阳等离子体(色球,日冕,风和速动球),银河系等离子体(分子云,星际介质,吸积盘及其日冕,蟹状星云) ,Sgr A,伽马射线爆发和磁星)以及银河外等离子体(活跃的银河核盘及其日冕,星系团,无线电波和银河外射流)。还讨论了包括下一代重新连接实验在内的实验室实验的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号