首页> 外文期刊>Folia parasitologica >Spermidine metabolism in parasitic protozoa - a comparison to the situation in prokaryotes, viruses, plants and fungi
【24h】

Spermidine metabolism in parasitic protozoa - a comparison to the situation in prokaryotes, viruses, plants and fungi

机译:寄生虫原生动物中的亚精胺代谢-与原核生物,病毒,植物和真菌中亚精胺的代谢比较

获取原文
获取外文期刊封面目录资料

摘要

Targeting polyamines of parasitic protozoa in chemotherapy has attracted attention because polyamines might reveal novel drug targets for antiparasite therapies (Müller et al. 2001). The biological function of the triamine spermidine in parasitic protozoa has not been studied in great detail although the results obtained mainly imply three different functions, i.e., cell proliferation, cell differentiation, and biosynthesis of macromolecules. Sequence information from the malaria genome project databases and inhibitor studies provide evidence that the current status of spermidine research has to be extended since enzymes of spermidine metabolism are present in the parasite (Kaiser et al. 2001). Isolation and characterisation of these enzymes, i.e., deoxyhypusine synthase (EC 1.1.1.249) (DHS) and homospermidine synthase (EC 2.5.1.44) (HSS) might lead to valuable new targets in drug therapy. Currently research on spermidine metabolism is based on the deposition of the deoxyhypusine synthase nucleic acid sequence in GenBank while the activity of homospermidine synthase was deduced from inhibitor studies. Spermidine biosynthesis is catalyzed by spermidine synthase (EC 2.5.1.16) which transfers an aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine. Spermidine is also an important precursor in the biosynthesis of the unusual amino acid hypusine (Wolff et al. 1995) and the uncommon triamine homospermidine in eukaryotes, in particular in pyrrolizidine alkaloid-producing plants (Ober and Hartmann 2000). Hypusine is formed by a two-step enzymatic mechanism starting with the transfer of an aminobutyl moiety from spermidine to the ε-amino group of one of the lysine residues in the precursor protein of eukaryotic initiation factor eIF5A by DHS (Lee and Park 2000). The second step of hypusinylation is completed by deoxyhypusine hydroxylase (EC 1.14.9929) (Abbruzzese et al. 1985). Homospermidine formation in eukaryotes parallels deoxyhypusine formation in the way that in an NAD+-dependent reaction an aminobutyl moiety is transferred from spermidine. In the case of homospermidine synthase, however the acceptor is putrescine. Thus the triamine homospermidine consists of two symmetric aminobutyl moieties while there is one aminobutyl and one aminopropyl moiety present in spermidine. Here, we review the metabolism of the triamine spermidine with particular focus on the biosynthesis of hypusine and homospermidine in parasitic protozoa, i.e., Plasmodium, Trypanosoma and Leishmania, compared to that in prokaryotes i.e., Escherichia coli, a phytopathogenic virus and pyrrolizidine alkaloid-producing plants (Asteraceae) and fungi.
机译:在化学疗法中靶向寄生虫原生动物的多胺已引起关注,因为多胺可能会揭示出抗寄生虫疗法的新型药物靶标(Müller等,2001)。尽管获得的结果主要暗示了三种不同的功能,即细胞增殖,细胞分化和大分子的生物合成,但尚未详细研究三胺亚精胺在寄生原生动物中的生物学功能。来自疟疾基因组计划数据库和抑制剂研究的序列信息提供了证据,表明亚精胺代谢的酶存在于寄生虫中,因此必须扩大亚精胺研究的现状(Kaiser等人,2001)。这些酶,即脱氧hypusine合酶(EC 1.1.1.249)(DHS)和高嘧啶合酶(EC 2.5.1.44)(HSS)的分离和表征可能会导致药物治疗中有价值的新靶标。目前,关于亚精胺代谢的研究是基于GenBank中脱氧嘧啶合酶核酸序列的沉积,而高精胺合酶的活性则是通过抑制剂研究得出的。亚精胺合酶(EC 2.5.1.16)催化亚精胺的生物合成,亚精胺合酶将氨基丙基部分从脱羧的S-腺苷甲硫氨酸转移至腐胺。亚精胺在真核生物中,特别是在生产吡咯并立定生物碱的植物中,不常见的氨基酸酪氨酸(Wolff等,1995)和罕见的三胺高嘧啶的生物合成中,也是重要的前体(Ober和Hartmann,2000)。酪氨酸是通过两步酶促机理形成的,首先是由DHS将氨基丁基部分从亚精胺转移到真核生物起始因子eIF5A的前体蛋白中赖氨酸残基之一的ε-氨基上(Lee和Park 2000)。 。羟丁氨化的第二步是通过脱氧腺嘌呤羟化酶(EC 1.14.9929)完成的(Abbruzzese等人,1985年)。真核生物中的高嘧啶的形成与脱氧嘧啶的形成平行,其方式是在NAD +依赖性反应中,氨基亚丁基部分从亚精胺中转移出来。然而,对于高嘧啶合酶而言,受体是腐胺。因此,三胺高嘧啶由两个对称的氨基丁基部分组成,而亚精胺中存在一个氨基丁基和一个氨基丙基部分。在这里,我们综述了三胺亚精胺的代谢,特别着重于寄生原虫(如疟原虫,锥虫和利什曼原虫)中的草氨酸和高嘧啶的生物合成,与原核生物(如大肠杆菌,一种植物致病性病毒和吡咯并立定生物碱)相比植物(菊科)和真菌。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号