...
首页> 外文期刊>Fluids and Barriers of the CNS >A perfusion bioreactor-based 3D model of the subarachnoid space based on a meningeal tissue construct
【24h】

A perfusion bioreactor-based 3D model of the subarachnoid space based on a meningeal tissue construct

机译:基于脑膜组织构造的蛛网膜下腔的基于生物反应器的灌注3D模型

获取原文
           

摘要

Altered flow of cerebrospinal fluid (CSF) within the subarachnoid space (SAS) is connected to brain, but also optic nerve degenerative diseases. To overcome the lack of suitable in vitro models that faithfully recapitulate the intricate three-dimensional architecture, complex cellular interactions, and fluid dynamics within the SAS, we have developed a perfusion bioreactor-based 3D in vitro model using primary human meningothelial cells (MECs) to generate meningeal tissue constructs. We ultimately employed this model to evaluate the impact of impaired CSF flow as evidenced during optic nerve compartment syndrome on the transcriptomic landscape of MECs. Primary human meningothelial cells (phMECs) were seeded and cultured on collagen scaffolds in a perfusion bioreactor to generate engineered meningeal tissue constructs. Engineered constructs were compared to human SAS and assessed for specific cell–cell interaction markers as well as for extracellular matrix proteins found in human meninges. Using the established model, meningeal tissue constructs were exposed to physiological and pathophysiological flow conditions simulating the impaired CSF flow associated with optic nerve compartment syndrome and RNA sequencing was performed. Engineered constructs displayed similar microarchitecture compared to human SAS with regards to pore size, geometry as well as interconnectivity. They stained positively for specific cell–cell interaction markers indicative of a functional meningeal tissue, as well as extracellular matrix proteins found in human meninges. Analysis by RNA sequencing revealed altered expression of genes associated with extracellular matrix remodeling, endo-lysosomal processing, and mitochondrial energy metabolism under pathophysiological flow conditions. Alterations of these biological processes may not only interfere with critical MEC functions impacting CSF and hence optic nerve homeostasis, but may likely alter SAS structure, thereby further impeding cerebrospinal fluid flow. Future studies based on the established 3D model will lead to new insights into the role of MECs in the pathogenesis of optic nerve but also brain degenerative diseases.
机译:蛛网膜下腔(SAS)内脑脊液(CSF)流量的变化与大脑有关,但也与视神经变性疾病有关。为克服缺乏能如实地概括SAS中复杂的三维结构,复杂的细胞相互作用和流体动力学的合适体外模型的问题,我们开发了一种使用人类脑膜内皮细胞(MEC)的基于灌注生物反应器的3D体外模型。产生脑膜组织构造。我们最终采用了该模型来评估CSF流量受损的影响,如在视神经区室综合征期间对MEC的转录组情况所证明的那样。将人原发性脑膜内皮细胞(phMEC)播种并在灌注生物反应器中的胶原蛋白支架上培养,以生成工程化的脑膜组织构建体。将经过工程改造的构建体与人SAS进行比较,并评估了特定的细胞间相互作用标记以及人类脑膜中发现的细胞外基质蛋白。使用建立的模型,将脑膜组织构建体暴露于模拟与视神经室综合征相关的CSF流量受损的生理和病理生理流动条件,并进行RNA测序。在孔径,几何形状以及互连性方面,与人类SAS相比,工程构造的结构显示出相似的微体系结构。他们对指示功能性脑膜组织的特定细胞间相互作用标记以及人类脑膜中发现的细胞外基质蛋白染色呈阳性。通过RNA测序分析发现,在病理生理流动条件下,与细胞外基质重塑,内溶酶体加工和线粒体能量代谢相关的基因表达发生了改变。这些生物过程的改变不仅可能干扰影响CSF的关键MEC功能,进而影响视神经稳态,而且可能改变SAS结构,从而进一步阻碍脑脊液流动。基于已建立的3D模型的未来研究将获得对MEC在视神经发病机理以及脑退行性疾病发病机理中的作用的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号