...
首页> 外文期刊>Fluids and Barriers of the CNS >Hydraulic resistance of periarterial spaces in the brain
【24h】

Hydraulic resistance of periarterial spaces in the brain

机译:脑中动脉周围间隙的水力阻力

获取原文
           

摘要

Periarterial spaces (PASs) are annular channels that surround arteries in the brain and contain cerebrospinal fluid (CSF): a flow of CSF in these channels is thought to be an important part of the brain’s system for clearing metabolic wastes. In vivo observations reveal that they are not concentric, circular annuli, however: the outer boundaries are often oblate, and the arteries that form the inner boundaries are often offset from the central axis. We model PAS cross-sections as circles surrounded by ellipses and vary the radii of the circles, major and minor axes of the ellipses, and two-dimensional eccentricities of the circles with respect to the ellipses. For each shape, we solve the governing Navier–Stokes equation to determine the velocity profile for steady laminar flow and then compute the corresponding hydraulic resistance. We find that the observed shapes of PASs have lower hydraulic resistance than concentric, circular annuli of the same size, and therefore allow faster, more efficient flow of cerebrospinal fluid. We find that the minimum hydraulic resistance (and therefore maximum flow rate) for a given PAS cross-sectional area occurs when the ellipse is elongated and intersects the circle, dividing the PAS into two lobes, as is common around pial arteries. We also find that if both the inner and outer boundaries are nearly circular, the minimum hydraulic resistance occurs when the eccentricity is large, as is common around penetrating arteries. The concentric circular annulus assumed in recent studies is not a good model of the shape of actual PASs observed in vivo, and it greatly overestimates the hydraulic resistance of the PAS. Our parameterization can be used to incorporate more realistic resistances into hydraulic network models of flow of cerebrospinal fluid in the brain. Our results demonstrate that actual shapes observed in vivo are nearly optimal, in the sense of offering the least hydraulic resistance. This optimization may well represent an evolutionary adaptation that maximizes clearance of metabolic waste from the brain.
机译:动脉周围间隙(PAS)是围绕大脑动脉的环形通道,并包含脑脊液(CSF):这些通道中的CSF流动被认为是清除代谢废物的大脑系统的重要组成部分。体内观察发现,它们不是同心的环形瓣环:但是,外部边界通常是扁圆形的,而形成内部边界的动脉通常偏离中心轴。我们将PAS横截面建模为由椭圆包围的圆,并改变圆的半径,椭圆的长轴和短轴以及相对于椭圆的圆的二维偏心率。对于每种形状,我们求解控制的Navier–Stokes方程以确定稳定的层流的速度曲线,然后计算相应的水力阻力。我们发现,观察到的PAS形状比相同大小的同心圆形瓣环具有更低的水力阻力,因此可以使脑脊髓液更快,更有效地流动。我们发现,当椭圆被拉长并与圆相交时,给定的PAS横截面面积会出现最小的水力阻力(并因此导致最大流速),这就是PAS分为两个瓣,这在睫状动脉周围很常见。我们还发现,如果内边界和外边界都接近圆形,则当离心率大时,最小的水力阻力就会发生,这在穿透动脉周围很常见。在最近的研究中假设的同心圆环并不是在体内观察到的实际PAS形状的良好模型,它极大地高估了PAS的水力阻力。我们的参数化可用于将更现实的阻力纳入脑部脑脊液流动的液压网络模型。我们的结果表明,从提供最小的水力阻力的角度出发,体内观察到的实际形状几乎是最佳的。这种优化可能很好地代表了一种进化适应性,可以最大程度地清除大脑代谢废物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号