首页> 外文期刊>Genes >Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria
【24h】

Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria

机译:基因组指导的梭状芽孢杆菌分析和比较基因组学揭示了营养综合型乙酸盐氧化菌中乙酸盐氧化和节能的不同策略

获取原文
           

摘要

Syntrophic acetate oxidation operates close to the thermodynamic equilibrium and very little is known about the participating organisms and their metabolism. Clostridium ultunense is one of the most abundant syntrophic acetate-oxidising bacteria (SAOB) that are found in engineered biogas processes operating with high ammonia concentrations. It has been proven to oxidise acetate in cooperation with hydrogenotrophic methanogens. There is evidence that the Wood-Ljungdahl (WL) pathway plays an important role in acetate oxidation. In this study, we analysed the physiological and metabolic capacities of C. ultunense strain Esp and strain BS T on genome scale and conducted a comparative study of all the known characterised SAOB, namely Syntrophaceticus schinkii , Thermacetogenium phaeum , Tepidanaerobacter acetatoxydans , and Pseudothermotoga lettingae . The results clearly indicated physiological robustness to be beneficial for anaerobic digestion environments and revealed unexpected metabolic diversity with respect to acetate oxidation and energy conservation systems. Unlike S. schinkii and Th. phaeum , C. ultunense clearly does not employ the oxidative WL pathway for acetate oxidation, as its genome (and that of P. lettingae ) lack important key genes. In both of those species, a proton motive force is likely formed by chemical protons involving putative electron-bifurcating [Fe-Fe] hydrogenases rather than proton pumps. No genes encoding a respiratory Ech (energy-converting hydrogenase), as involved in energy conservation in Th. phaeum and S. schinkii, were identified in C. ultunense and P. lettingae . Moreover, two respiratory complexes sharing similarities to the proton-translocating ferredoxin:NAD + oxidoreductase (Rnf) and the Na + pumping NADH:quinone hydrogenase (NQR) were predicted. These might form a respiratory chain that is involved in the reduction of electron acceptors rather than protons. However, involvement of these complexes in acetate oxidation in C. ultunense and P. lettingae needs further study. This genome-based comparison provides a solid platform for future meta-proteomics and meta-transcriptomics studies and for metabolic engineering, control, and monitoring of SAOB.
机译:乙酸营养菌的氧化接近热力学平衡,对参与的生物及其代谢知之甚少。终产物梭状芽胞杆菌是在高浓度氨气的工程化沼气工艺中发现的最丰富的乙酸共氧化菌(SAOB)之一。已证明与氢营养型产甲烷菌协同作用可氧化乙酸盐。有证据表明,Wood-Ljungdahl(WL)途径在乙酸盐氧化中起重要作用。在这项研究中,我们在基因组规模上分析了C.ultunense菌株Esp和BS T菌株的生理和代谢能力,并对所有已知的特征性SAOB进行了比较研究,这些菌株是SCHYNTROPHCETICUS SCHINKII,Thermacetogenium phaeum,Tepidanaerobacter acetatoxydans和Pseudothermotoga lettingae。结果清楚地表明了生理学上的健壮性对于厌氧消化环境是有益的,并且揭示了关于乙酸盐氧化和能量节约系统的出乎意料的代谢多样性。不像S. schinkii和Th。显然,由于其基因组(以及莴苣的基因组)缺少重要的关键基因,因此,ULT。C. ultunense显然没有采用氧化的WL途径进行乙酸的氧化。在这两个物种中,质子原动力可能是由涉及推定的电子分叉的[Fe-Fe]氢酶而不是质子泵的化学质子形成的。没有编码呼吸性Ech(能量转换氢酶)的基因,如Th中的能量守恒。在C. ultunense和P. lettingae中鉴定出了phaeum和S. schinkii。此外,预测了两个与转运质子的铁氧还蛋白:NAD +氧化还原酶(Rnf)和Na +抽运的NADH:醌氢酶(NQR)相似的呼吸复合物。这些可能形成呼吸链,涉及电子受体而不是质子的还原。然而,这些复合物在超微假单胞菌和莴苣假单胞菌的乙酸盐氧化中的参与需要进一步研究。这种基于基因组的比较为将来的元蛋白质组学和元转录组学研究以及SAOB的代谢工程,控制和监测提供了坚实的平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号